

Journal of Ayurveda Medical Sciences

*Refereed, Indexed, Peer reviewed, Open access, Quarterly
Journal for Rapid Publication of Ayurveda and Other
Traditional Medicine Research*

J Ayu Med Sci | 2016 | Vol 1 | Issue 1 (Jul – Sep)

ISSN: Awaited

www.jayumedsci.com

©Journal of Ayurveda Medical Sciences – HRGS' Ayurveda Journal

Authentication and Proximate Analysis of *Madhuka indica* Gmell. - A Wild Edible Flowers Used for Traditional Fermentation of Ayurvedic Biomedicines

Juliet Elizabeth Castelino¹, Mallya Suma V², KN Sunilkumar³

¹PG Scholar Department of Dravyaguna, SDM College of Ayurveda, Kuthpady, Udupi, Karnataka. ²Associate professor, PG studies in Department of Dravyaguna, SDM College of Ayurveda, Kuthpady, Udupi, Karnataka. ³Senior research officer, SDM Centre for research in Ayurveda and Allied sciences, Udupi, Karnataka.

*Correspondence: Email: sumamallya@gmail.com, Mobile: +919844740027

ABSTRACT

Introduction: *Madhuka indica* Gmel. (Sapotaceae) is a medium sized deciduous tree, the flowers of which are commonly known as *Madhukapushpa*. These wild flowers are said to possess rich source of nutrition apart from possessing many therapeutic properties. Shade dried flowers added as fermentation initiators in *Asava-arishta* (fermented alcoholic preparations). Hence pharmacognostic study on this flower has been designed along with its proximate analysis. **Methods:** Flowers collected from the authenticated trees were used for the study, after proper cleaning from extraneous matter. Macro-microscopy, physicochemical standards and nutraceutical composition studied using standard methodology. **Results:** Cream coloured pleasant smelling corolla; thick epidermal cuticle which packs within itself sugary, pulpy and parenchymal cells- are the characteristic Macro-microscopic features of flower respectively. Physico-chemical Standards obtained in this study will help authentication of the sample. Nutritional assessment of flowers disclosed these to be rich in both reducing sugar (31.25% w/w) and non-reducing sugar (20.625% w/w). **Conclusion:** Flowers of *Madhuka indica* Gmel. having rich pharmaceutical and nutritional benefit have investigated scientifically to record their proximate analytical value along with macro-microscopic standards. Results drawn out of this study will prove as standard parameters to authenticate the sample.

KEYWORDS

Madhuka indica Gmel, pharmacognostic, proximate analysis, standardisation.

Received: 10.09.2016

Accepted: 14.09.2016

DOI: 10.5530/jams.2016.1.7

Madhuka *indica* Gmel. from Sapotaceae is a medium sized deciduous tree found in mixed deciduous forests throughout India^[1]. Flowers of this tree known as *Madhuka pushpa* cream coloured fragrant corollas collected out of this tree are of edible rich with multiple nutrient factors^[2], apart from this used as fermentation agents in alcoholic pharmaceutical preparation (*Asava-arishta*) of Indian system of medicine^[3]. The tree showers during March to April and these succulent fragrant corollas will be collected and spread in open air for drying^[4]. During this flowers shrink in size, turn reddish brown and odour increases due to drying^[4]. Flowers are eaten raw or cooked as literature reveals as a rich source of nutrition^[5]. These said to contain multiple nutrient factors like sugar, vitamins, phosphorous, calcium, iron, magnesium and copper^[6]. The sugar compound present in this flower is identified as sucrose, maltose, glucose, fructose, arabinose and rhamnose^[7]. Flowers are used in the preparation of distilled liquors since ages^[8].

Beside this flowers found to be useful certain pathological conditions like *Rakthapitta*, *Trisna*, *Daha*, *Shrama*, *Shwaasa*, *Kshata* and *Kshaya*^[9]. These are recommended in pacification of Vata and pitta dosha^[10]. Ethnomedical record recommends decoction of flower in cough, chronic bronchitis and wasting diseases. Flowers advised to consume with milk in impotence due to general debility^[11].

Such a potent flower of natural origin is less studied or known to whole science of natural product. Hence a scientific study on this flower designed to document its pharmacognostic characters along with its nutritional factors.

MATERIALS AND METHODS

Collection and identification of plant samples

Flowers of *Madhuka* (*Madhuka indica* Gmel.) were collected in flowering season from Udupi district, cleaned properly from extraneous matter, authenticated using floras and botanists opinion, and sample deposited at SDM Centre for Research in Ayurveda and Allied sciences. (Voucher No. 15070101). Sample preserved in fixative solution. The fixative used was FAA (Formalin- 5ml+ acetic acid 5ml + 70% ethyl alcohol- 90 ml). The materials were left in FAA for more than 48 hours.

Macroscopy

The external features of the test samples were documented using Canon IXUS digital camera. Organoleptic features of flowers like colour, taste, appearance, smell were recorded according to standard guidelines^[12].

Microscopy

The preserved specimens were cut into thin transverse section using a sharp blade and the sections were stained with safranine. Transverse sections were photographed using Zeiss AXIO trinocular microscope attached with Zeiss AxioCam camera under bright field light. Magnifications of the figures are indicated by the scale-bars^[13].

Proximate analysis

Physico-chemical standards of flower like total ash, acid insoluble ash, water soluble ash, alcohol soluble extractive, water soluble extractive were detected according to standard methodology^[14]. Estimation of total fat, crude fibre, total protein, reducing and non-reducing sugar, total sugar carried out and values recorded^[15].

RESULTS AND DISCUSSION

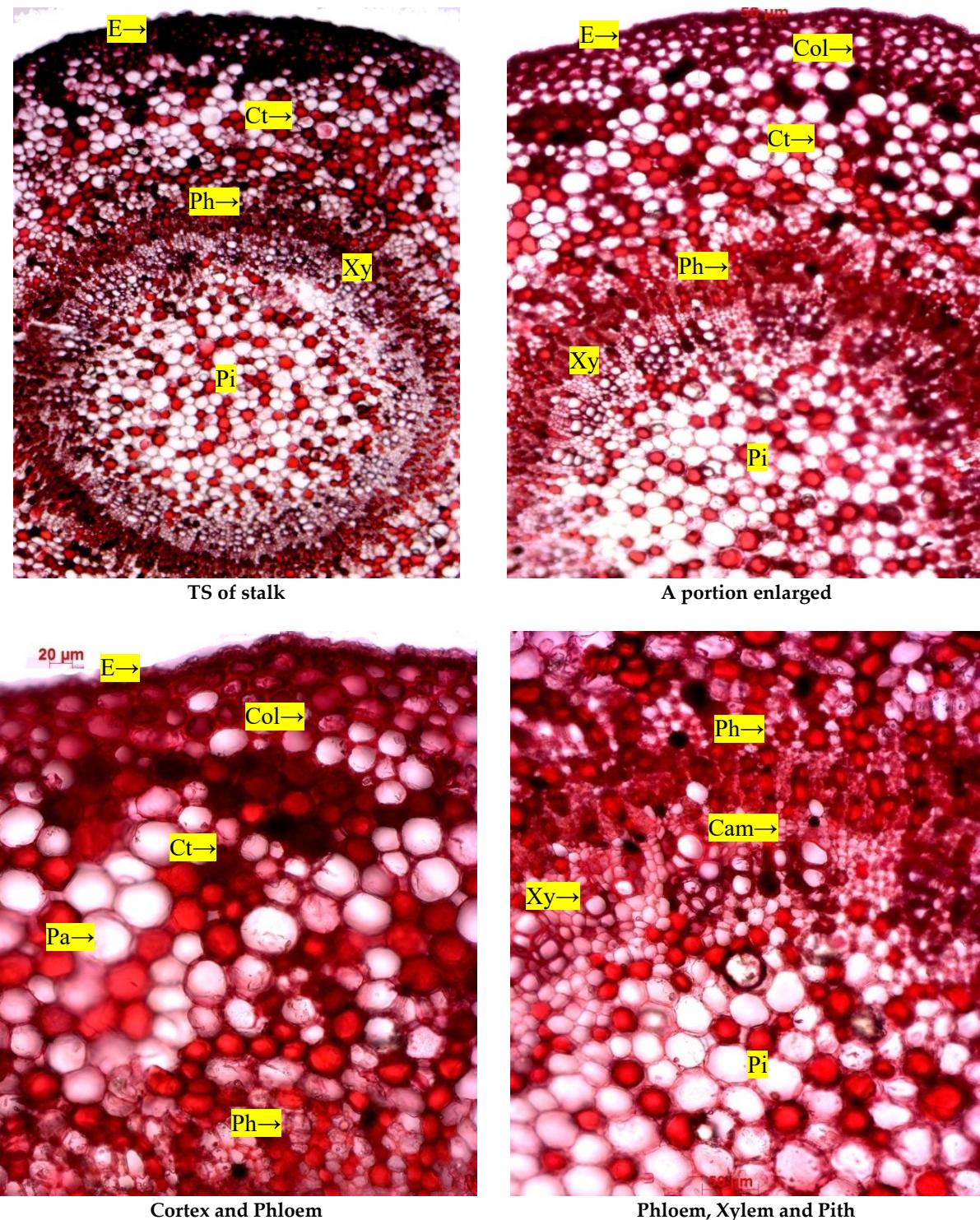
Macroscopy

Flowers in dense fascicle near end of branch, consists of 10-12 lobed, gamopetalous fleshy cup shaped, tubular, cream coloured corolla, 1.5cm long, scented caducous, free and hairy above, flat and hollow at the base enclosing 20-25 epipetalous stamens arranged in rows. Pedicels 2.5-4cm long, densely ferruginous pubescent. Sepals ovate-lanceolate, ferruginous pubescent. Corolla usually 7-9 lobed, erect, ovate-lanceolate creamy white. Stamens 25-26, in rows. Ovary red tomentose. Style long, exerted. Anther sub sessile, basifix, lanceolate, with pointed tip and hairy at the back with prominent dark brown connective strand (Figure 1). Taste sweet, odour characteristic.

Figure 1. Macroscopy of *Madhuka indica* Gmel. Flowers

Microscopy

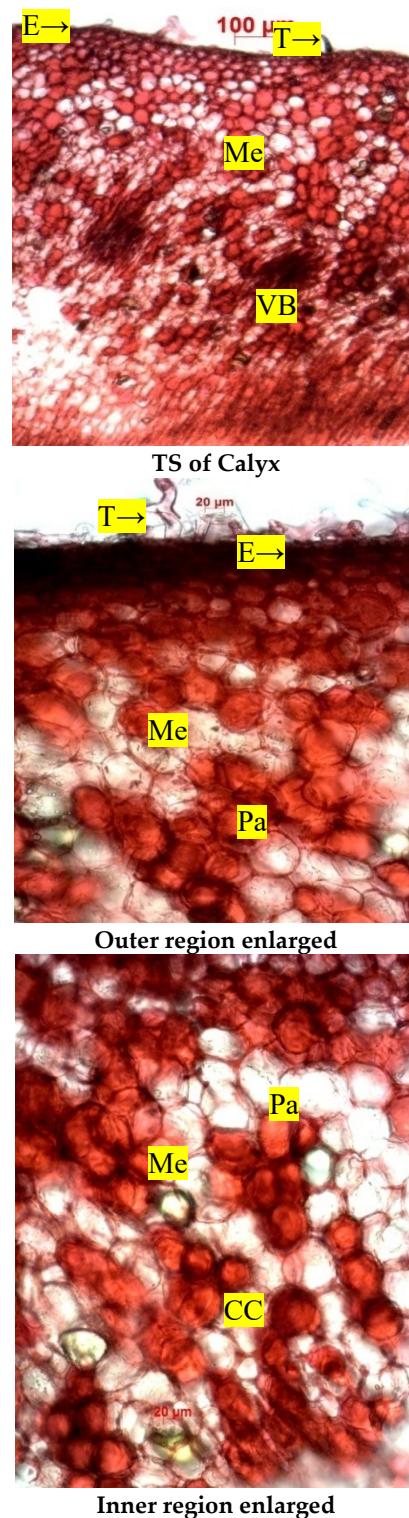
Stalk: TS is circular in outline, shows an epidermis formed by thick walled slightly papillose cells with cuticle; 2 to 5 layers of collenchymas follows the epidermis; cortex is formed by thick walled parenchyma in about 10 layers, many cells filled with some contents; inner to cortex continuous ring of phloem, separated from xylem by cambium, with usual elements are seen; the centre of TS is occupied by pith formed by parenchyma, many with contents (Figure 2).


Calyx: TS shows upper and lower epidermis with plenty of bent unicellular covering trichome. Inner to epidermis there are 2 to 3 layers of collenchymas having parenchymatous cortex inner to it. Lamina portion is made up of parenchyma cells similar to those found in cortex of stalk, many of the cells contain some contents and there are some cells with starch grains, yellow colored fluid and prismatic crystals (Figure 3).

Corolla: TS passing through midrib shows thick walled outer and inner epidermis with cuticle, the ground tissue is made up of compactly arranged parenchyma cells full of sugary pulp and few idioblasts which are larger than usual cells and shows some contents; many tiny vascular bundles distributed throughout the section (Figure 4).

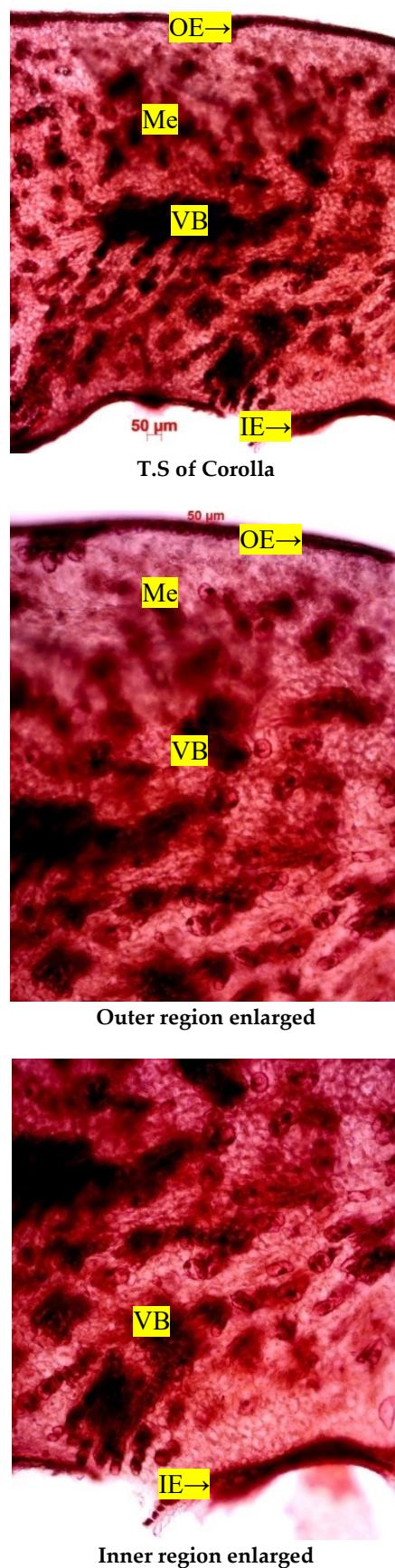
Proximate analysis

Physico-chemical and proximate analysis revealed nutraceutical values of shade dried flowers (Table 1).


Figure 2. Microscopy of stalk of *Madhuka indica* Gmel. flowers

Cam – cambium; Col – collenchyma; Ct – cortex; E – epidermis; Pa – parenchyma; Ph – phloem; Pi – pith; Xy – xylem.

India is a great heritage of natural product and different traditional medicinal systems with innovative practicing principles. According to some records Indian material includes about 2000 drugs of natural origin. Among these 400 are of mineral and animal origin while rest are of vegetable origin²⁰. Overuse of synthetic drugs, their adverse effects motivated human population to turn towards nature. *Madhuka indica* a wild tree with fragrant flowers is less known drug. Flowers are commonly used fermentative initiators in the preparations of *Asava-arishta*., apart from having rich nutritional value are also used in certain therapeutic conditions. Such a valuable medicinal flower needs a quality control parameter published scientifically along with its nutritional value.


Figure 3. Microscopy of calyx of *Madhuca indica* Gmel. flowers

CC – content cell; E – epidermis; Me – mesophyll; Pa – parenchyma; T – trichome; VB – vascular bundle.

Authentication of raw material an important step in quality control, involves taxonomic identification, macro- microscopic recordings of the sample collected²¹. Macroscopy help in quick identification of plant material whereas microscopy of the drug reveal about its histological arrangement²². Cream colored 10-12 lobed gamopetalous, fleshy cup shaped tubular scented flowers are macroscopic features of *Madhuca indica* flowers. Pedicels were long (2.5 to 4cm) ferruginous and pubescent in appearance. Twenty five to twenty six Stamens arranged in rows with red tomentose ovary and long exerted style were the characteristic feature inessential whorls of these flower. Sweet taste with characteristic pleasant odour and sticky feel are main organoleptic features of the flower.

Figure 4. Microscopy of corolla of *Madhuca indica* Gmel. flowers

IE – inner epidermis; Me – mesophyll; OE – outer epidermis; VB – vascular bundle

Table 1. Proximate analysis *Madhuka indica* Gmel. Flower

Parameter	Results n=3 %w/w
Total Ash	2.644
Acid Insoluble Ash	0.097
Water soluble Ash	0.406
Alcohol soluble extractive	23.709
Water soluble extractive	25.662
Fat	0.392
Fibre	0.139
Total protein	1.538
Reducing sugar	31.25
Non Reducing sugar	20.625

Microscopic study reveals thick walled papillose cuticle followed by collenchymatous cells of 2-5 layers are the characteristic observation of TS of the stalk of the flower. Ten layered parenchymatous cells filled with contents are the features of cortex which enclose ring of phloem separated by xylem. Centre of the stalk is occupied by pith, formed by parenchymatous cells. Unicellular trichomes are the features of TS of calyx. On its upper and lower epidermis, 2 to 3 layers of collenchymatous followed by parenchymatous cortex, filled with starch grain, yellow coloured fluid and prismatic crystals are the features of middle layer of calyx of flower.

TS of corolla characteristically shows thick cuticle of upper and lower epidermal cells, packed compactly arranged parenchymatous cells with full of sugary pulp and idioblasts with scattered tiny vascular bundles.

Physicochemical parameters of a drug are indicative off their chemical nature, contamination with physical impurities and their solubility in different extractive media²³. The total ash represents the carbonaceous matter of a drug²⁴. Here the value obtained of *Madhuka indica* was 2.644% w/w. Acid insoluble ash indicates the percentage of trace elements along with contamination of other siliceous earthy matter¹⁴. The test drug has showed 0.097% w/w represents its less contamination simultaneously showing its purity. Water soluble ash obtained from the test drug was 0.406% w/w. Alcohol and water soluble extracts represents their solubility in respective media along with the chemical nature of a drug, as well as maximum extractive principles that can be obtained in these media²⁵. Here the values obtained are 23.709 %w/w and 25.662% w/w in alcohol and water respectively shows their solubility in these media.

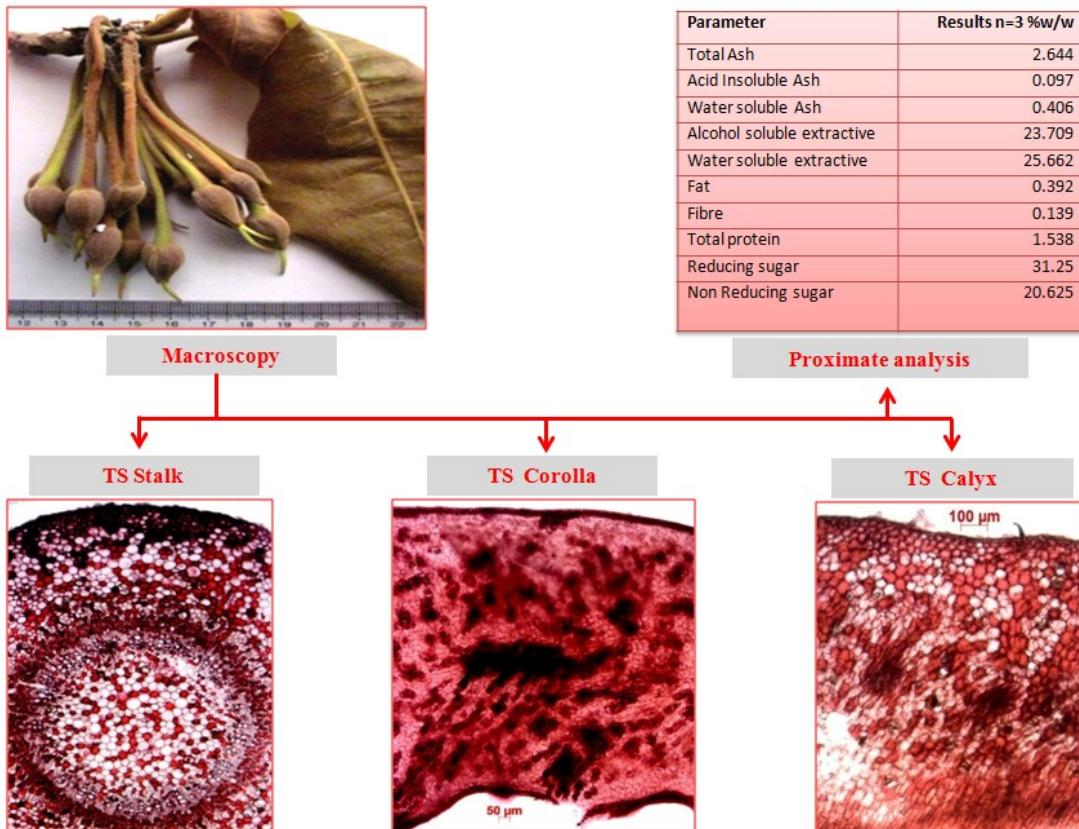
Proximate analysis is a system of analysis of nutrients also termed as Conventional analysis in which gross components (protein, fat, carbohydrate, ash) of the material are determined²⁶. *Madhuka* flowers are one among such edible flowers and are consumed as a source of nutrition. Proximate analytical report of test drug supported the view as a source of protein (1.538%), reducing sugar (31.25%) and non-reducing sugar(20.625%).

CONCLUSION

Madhuka indica Gmel, a wild tree with edible fragrant flowers, used commonly in Indian system of Medicine in the preparation of Asava-arishta. Rich commercial, nutritional and medicinal values of these flowers tested scientifically and documented systematically. Nutritional value along with its pharmacognostic parameters published in this paper will prove as authenticated quality measures of test drug.

REFERENCES

- Patel M, Naik SN. Flowers of *Madhuka indica* JF Gmel, Present status and future perspectives. Indian Journal of Natural Products and Resources 2010;1(4):438-43.
- Bhat Gopalkrishna K. Flora of Udupi, Udupi: Indian Naturalist; 2003; p.339.
- Sreelal A, Basavaraj YG, Reshma MS. Critical analysis on Pharmaceutics of Alcoholic Preparations (Asava-Arishta) in Ayurveda. Journal of Ayurveda and Holistic Medicine 2013;1(9):15-22.
- The Wealth of India, 1st ed, Vol VI, New Delhi: Council of Scientific and Industrial Research; 1976; p.208-15.
- Gamble JS. Flora of Presidency of Madras. Part II, Rubiaceae to Ebanaceae. London: Authority of the secretary state for India in Council; 1921; p.763.
- Pushpendra KPnarendra K, Prajapati, Dubey BK. *Madhuka indica*, a review of its medicinal property. International Journal of Pharmaceutical Sciences and Research 2012;3(5):1285-93.
- Khare CP. Indian Medicinal Plants, An illustrated dictionary. New Delhi: Springer; 2007; p.191.
- AM Sreelal, Ganti Y Basavaraj, Saokar Reshma. Critical analysis on Pharmaceutics of Alcoholic Preparations (Asava-Arishta) in Ayurveda. Journal of Ayurveda and Holistic Medicine 2013;1(9):15-22.
- The Ayurvedic Pharmacopeia of India, Part I, Volume II. New Delhi: The controller of Publications; 2006; p.102-3.
- Sharma PV. Dravyaguna vijnana Vol II, Varanasi: Chaukambha Bharati Academy; 1999; p.183.
- Nadkarni KM, Nadakarni AK. Indian Materia Medica, Vol 1. Bombay: Popular Prakashan; 1976; p.180.
- Wallis TE. Textbook of Pharmacognosy. New Delhi: CBS Publishers and Distributors; 1985; p.527.
- Evans WC. Trease and Evans' Pharmacognosy, 15th Edn. London: WB Saunders Ltd; 2002; p.527-45.
- Quality control methods for Medicinal plant materials. Geneva: World Health Organization; 1998; p.25-8.
- Sunil Kumar KN, Shakila R, Amerjothy S. Physicochemical evaluation, nutraceutical composition and HPLC-fingerprint of *Helicanthus elastica* (Desr.) Danser (Indian Mango Mistletoe). Int J Green Pharm 2014;8:175-9.


16. Mukharjee Pulok K. Quality Control of Herbal Drugs. New Delhi: Business Horizons; 2002; p.42-58.
17. Darshan Shankar, Unnikrishnan PM. Challenging the Indian Medicinal Heritage. New Delhi: Foundation Books; 2004; p.42-53.
18. Sharma Rakesh K, Arora Rajesh. Herbal Drugs A twenty First Century perspective, 1st Edition. New Delhi: Medical Publishers (P) LTD; 2006; p.9-22.
19. Castelino Juliet, Mallya Suma V, KN Sunilkumar. Efficacy of Madhukapushpa (*Madhuka indica* Gmel.) as Sandhaneya dravya in Sandhana kalpana wrt to Madhukasava, Dissertation work Submitted to RGUHS Bangalore; 2016; p.81-6.
20. Gokhale SB, Kokate CH, Purohit AP. A text book of Pharmacognosy, 34th edition. Pune: Niarli Prakashan; 2013; p.1-4.
21. Joshi Devendra, Joshi Geeta. Quality Control & Standardization of Ayurvedic Medicines. Varanasi: Chaukamba Orientalia; 2011; p.113.
22. Shivaprasad NP, Suma V Mallya, Sunilkumar KN. Anatomical findings of *Moringa oleifera* Seed. Aryavaidyan 2015;XXVII(3):137-42.
23. Admani Mallikarjun, Sunilkumar KN, Suma V Mallya. Pharmacognostic characterization of flowers *Woodfordia fruticosa* Kurz. (Dhataki Pushpa) used as fermentation initiators. Journal of Ayurvedic and Herbal Medicine 2015;1(1):9-12.
24. Sunilkumar KN, Ravishankar B, Yashovarma B, Rajakrishnan R, Thomas J. Development of quality standards of medicinal mistletoe- *Helicanthus elastic* (Desr.) Danser employing Phramacopeal procedures. Saudi Journal of Biological Sciences 2016; In Press.
25. Mallya Suma V. Comprehensive study of Plants In Surasaadi Gana wrt to their antibacterial activity (PhD thesis), Nashik, Maharashtra: Maharashtra University of Health Sciences; 2016.
26. Rahimullah Shiakh, Imran Zainuddin Syed. Proximate and phytochemical analysis of *Cassia tora* leaves. Journal of Research in Pharmaceutical Science 2015;2(8):1-3.

ABOUT FIRST/CORRESPONDING AUTHOR/S

Dr. Juliet Elizabeth Castelino BAMS is a final year PG scholar at Department of Dravyagauna, SDM College of Ayurveda Kuthpady, Udupi. Recently she has submitted her dissertation work to RGUHS Bangalore. Her field of interest are clinical practice with single drugs and new drug discovery.

Dr. Suma V. Mallya MD, PhD (Ayu) is working as associate professor at SDM College of Ayurveda, Kuthpady, Udupi. She is a recognized PG and PhD guide in Dravyagauna from RGUHS Bangalore. She has presented many papers in national and international seminars and published around 12 scientific papers in various journals.

GRAPHICAL ABSTRACT

Cite this article as: Juliet Elizabeth Castelino, Mallya Suma V, KN Sunilkumar. Authentication and Proximate Analysis of *Madhuka indica* Gmel. - A Wild Edible Flowers Used for Traditional Fermentation of Ayurvedic Biomedicines. J Ayu Med Sci 2016;1(1):12-18. DOI: 10.5530/jams.2016.1.7

©Journal of Ayurveda Medical Sciences

- Herbal Research Guidance and Solutions' (HRGS) Ayurveda Journal