

Journal of Ayurveda Medical Sciences

*Refereed, Indexed, Peer reviewed, Open access, Quarterly
Journal for Rapid Publication of Ayurveda and Other
Traditional Medicine Research*

J Ayu Med Sci | 2016 | Vol 1 | Issue 1 (Jul – Sep)

ISSN: Awaited

www.jayumedsci.com

©Journal of Ayurveda Medical Sciences – HRGS' Ayurveda Journal

Quality standards for Bhūnimbādi Kvātha Cūrṇa

Sunil Kumar KN¹, Priyadarshini¹, Ravishankar B¹, Yashovarma B²

¹SDM Centre for Research in Ayurveda and Allied Sciences, Laxminarayana Nagar, Kuthpadi, Udupi, INDIA – 574 118. ²SDM College (Autonomous), Ujire, Belthangadi Taluk, Dakshina Kannada, INDIA – 574 240

*Correspondence: Email: sunilkumarnarayanan@gmail.com, Mobile: +918050230864

ABSTRACT

Introduction: Bhūnimbādi Kvātha cūrṇa (BKC) is a polyherbal formulation, compounded from parts of *Swertia chirata* Buch.Ham, *Aconitum heterophyllum* Wall. ex. Royle, *Symplocos racemosa* Roxb., *Cyperus rotundus* Linn., *Holarrhena antidysenterica* Wall., *Coleus vettiveroides* K. C. Jacob, *Coriandrum sativum* Linn., and *Aegle marmelos* Corr. as per formula composition in Ayurvedic Formulary of India. It is used in the treatment of asthma, cough, fever due to pitta dosa, bleeding disorder and fever. It is a popular medicine for cure of digestive impairments in fevers of different types, and many other clinical conditions. Though herbal medicines are effective, becoming popular, but they lack standardization. Standardization of herbal formulation is essential in order to assess the quality, purity, safety and efficacy of the drug. **Methods:** In the present study BKC was subjected to organoleptic, macro-microscopic, physicochemical, HPTLC and ¹H NMR characterization employing standard methodology mentioned in API and specified protocols. **Results:** Organoleptic characters, macro – microscopy, physico-chemical studies viz. total ash, water soluble ash, acid insoluble ash, water, alcohol and hydro – alcohol soluble extractive, loss on drying at 105°C, pH successive extractive values by Soxhlet extraction method and HPTLC and ¹H NMR were recorded. **Conclusion:** A monograph on quality standards for BKC is proposed from the data obtained. The results of the present investigation would serve as a document to control the quality of the multi-herb formulation BKC.

KEYWORDS

HPTLC, ¹H NMR fingerprint, monograph, polyherbal medicines, standardization.

Received: 27.08.2016

Accepted: 10.09.2016

DOI: 10.5530/jams.2016.1.4

Ayurveda, the herb-based system of medicine is now well recognized not only in India, but also in other countries. As the need for safer drugs is increasing, attention has been drawn to the quality, efficacy, and standards of Ayurvedic formulations.^[1] Because of the lack of quality profile and documentation there is a difficulty in the approval of Ayurveda medicines in the developed countries. All medicines of synthetic or plant origin should fulfil the basic requirements of being safe and effective.^[2-9] Several problems, which are not applicable to synthetic drugs, often influence the quality of herbal drugs. Due to the complex nature and inherent variability of the constituents of plant-based drugs, it is difficult to establish quality control parameter.^[10] The World Health Organization has appreciated the importance of medicinal plants for public health care in developing nations and has evolved guidelines to support the member states in their efforts to formulate national policies on traditional medicine and to study their potential usefulness including evaluation, safety, and efficacy.^[11] Hence every herbal formulation in the Ayurvedic Formulary needs standardisation studies.

Bhūnimbādi Kvātha Cūrṇa (BKC) of Br̄hannighaṇṭu-ratnākara, Pittajvara-prakaraṇa mentioned in Ayurvedic Formulary of India (AFI) for diseases like asthma, cough, fever due to pitta dosa, bleeding disorder and fever.^[12] BKC is composed of coarse powder of ingredients viz. Bhūnimba (*Swertia chirata* Buch. Ham. - plant), Ativisā (*Aconitum heterophyllum* Wall. ex. Royle - tuber), Lodhra (*Symplocos racemosa* Roxb. - stem bark), Mustaka (*Cyperus rotundus* Linn. - rhizome), Indrayava (*Holarrhena antidysenterica* Wall. - seed), Bālaka (*Coleus vettiveroides* K. C. Jacob - root), Dhānyaka (*Coriandrum sativum* Linn. - fruit), and Bilva (*Aegle marmelos* Corr. - fruit pulp) in equal proportions. In the present study we made an attempt to develop the quality control parameters for BKC using organoleptic, macro-microscopic, physico – chemical, HPTLC fingerprint and ¹H – NMR spectroscopy analysis.

MATERIALS AND METHODS

Collection and identification of plant samples

Dry raw samples were collected from the raw drug section of SDM Ayurveda pharmacy, Udupi as well as some authentic raw material suppliers. The samples were authenticated using macro-microscopic examination, voucher specimens (No. SDM/VGST-SMYSR/BKC/01-08) have been deposited in the crude drug museum of Pharmacognosy department of SDMCRAAS, Udupi, Karnataka.

Method of Preparation of Bhūnimbādi Kvātha Cūrṇa

So far, there is no protocol for the preparation of kvātha cūrṇa (coarse powder) in Ayurvedic Pharmacopoeia of India (API) though there is protocol for preparation of cūrṇa (fine powder). BKC was prepared as per procedure detailed for cūrṇa in API,^[13] with modification of sieve size. All the ingredients of Pharmacopoeial quality were washed separately to have no microbial load,^[14] dried, and coarsely powdered. The individual raw drug powders were passed separately through sieve number 10. Each ingredient was weighed separately and mixed together in equal proportions as per API.^[12] The mixture was passed through sieve number 10 to obtain a homogenous blend and packed in an air-tight container.

Organoleptic examination, macro – microscopy, physico-chemical studies viz. total ash, water soluble ash, acid insoluble ash, water, alcohol and hydro – alcohol soluble extractive, loss on drying at 105°C, pH successive extractive values by Soxhlet extraction method were carried out as per the standard procedures mentioned in API.^[15]

TLC/HPTLC

Sample preparation

Ingredients- 5 g each of Bhūnimba, Ativisā, Lodhra, Mustaka, Indrayava, Bālaka, Dhānyaka and Bilva were extracted exhaustively with methanol using Soxhlet apparatus. The filtrate was concentrated to dryness and 100 mg of dried residue was dissolved in 5 ml of methanol in a standard flask individually.

Kvātha Chūrṇa - 40 g of BKC was extracted exhaustively with methanol using Soxhlet apparatus. The filtrate was concentrated to dryness and 100 mg of dried residue was dissolved in 5 ml of methanol in a standard flask.

Method

Extracts of ingredients and BKC were applied on aluminium plates precoated with silica gel 60 F 254 of 0.2 mm thickness (Merck, Germany) using LINOMAT 5 applicator.^[16] The plate was developed in CAMAG glass twin trough chamber previously saturated with mobile phase toluene: ethyl acetate: formic acid (7: 2: 0.2 v/v). The developed plate was visualized in CAMAG visualizing chamber and scanned in CAMAG SCANNER 4 under 254, 366. Derivatisation was done by dipping in vanillin-sulphuric acid (VS) followed heating at 105 °C till the spots appeared.^[17, 18] The derivatized plate was scanned at 620 nm. CAMAG WinCATS software was used to draw R_f values and densitograms.

¹H NMR spectroscopy

Sample preparations

The method for the extraction was developed from a standard method,^[19] with slight modification. Approximately 20 mg of all the samples were weighed into a 1.5 ml reaction tube and 1.5 ml of deuterated DMSO-D6 containing 0.05% TMS was added. One millilitre of the supernatant was added to a 5 mm diameter NMR spectroscopy tube and the samples were submitted for NMR analysis.

Operation parameters

¹H NMR spectra of the formulation was recorded at 28 °C on a Bruker Avance 500 MHz spectrophotometer (Bruker Analytik, Rheinstetten, Germany) equipped with a 5 mm cyroprobe head and operating at proton frequency of 500.13 MHz. The spectra were acquired with 256 scans, requiring approximately 10 min acquisition time. The following parameters were used during the acquisition: ≈0.16 Hz/point, pulse width (PW) 30° and relaxation delay = 1 s. FIDs were Fourier transformed with LB = 0.30 Hz.

The spectra were referenced to the internal TMS peak. TOPSPIN version 1.3 software was used for spectra acquisition and processing of the ¹H NMR spectra which were manually corrected for phase and baseline distortions. The residual solvents signals for DMSO (2.65–2.45 ppm) and water (3.60–3.10 ppm) were excluded.

RESULTS AND DISCUSSION

Macroscopic features of ingredients of BKC are shown in (Figure 1). Microscopic features of powder of individual ingredient along with BKC are presented in (Figure 2 and 3); physico – chemical constants for all the ingredients used in the preparation of BKC is analysed and given in (Table 1). HPTLC profile has been generated for BKC with ingredients is given in (Figure 4 and 5) and R_f values are presented in (Table 2, 3 and 4). Methanolic extract of BKC was analysed using ¹H NMR spectroscopy is shown in (Figure 6). There is no monograph on standardization of BKC in API (Part II - Formulations). This study includes macro-microscopy features, organoleptic, physico – chemical, HPTLC fingerprinting and ¹H NMR spectroscopy of BKC. Data derived from the present study can be used as a monograph for standardization of BKC for the academia and industry.

Macroscopic features of ingredients of BKC recorded in the present study would help in identification of the ingredients using naked eye. *Andrographis paniculata* Nees is sometimes used as substitute for Bhūnimba, but it is the source of Kirātātikta API. Root stock of Bālaka is often found as adulterant to increase weight. In Bilva pieces of pericarp of fruit and plenty of seeds were found as adulterant. Detailed macroscopic examination will help in differentiating these adulterants/ substitutes from official drug. Texture of the Bhūnimbādi Kvātha Cūrṇa was coarse. Colour was yellowish brown, with bitter taste and characteristic odour due to the specific properties of a variety of ingredients.

Powder of Bhūnimba showed characters like thick walled polygonal cells, pitted parenchyma, tracheidal fibres, thin walled fibres and fragments of pitted vessels (Figure 2.1); fragments of leaf lamina with chlorophyll and epidermis in surface view are the characters of Bhūnimba detected in BKC (Figure 3.1). Powder of Ativisā showed characters like

Figure 1 Macroscopy of ingredients of Bhūnimbādi Kvātha Cūrṇa

Bhūnimba – Whole Plant

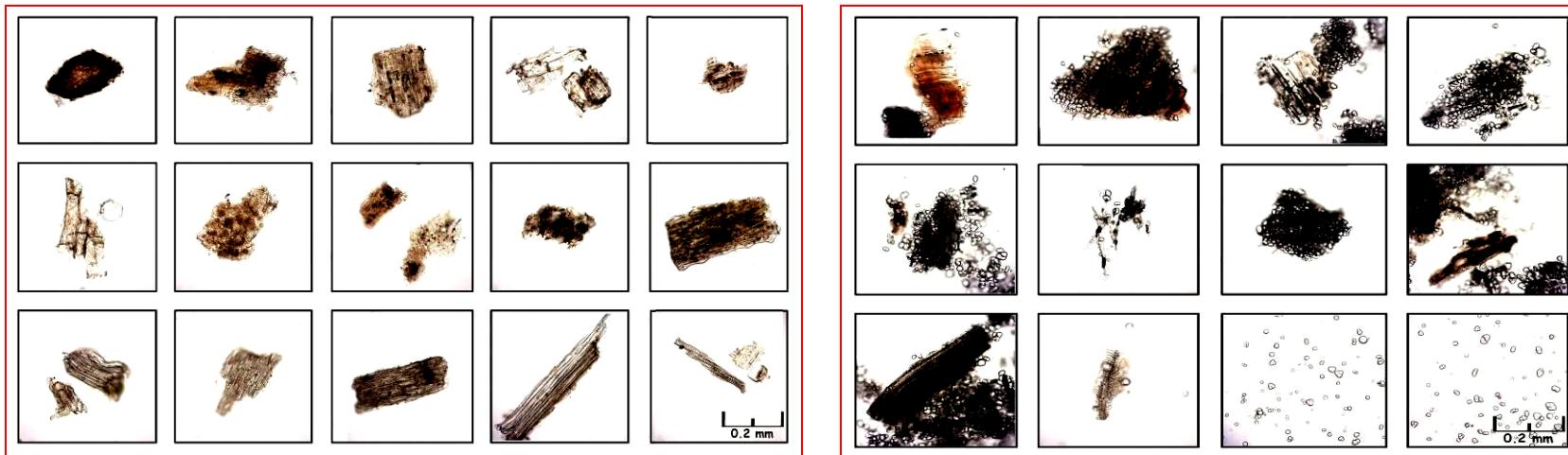
Ativiṣā - Tuber

Lodhra - Bark

Mustaka – Rhizome

Indrayava - Seed

Bālaka – Root



Dhānyaka - Fruit

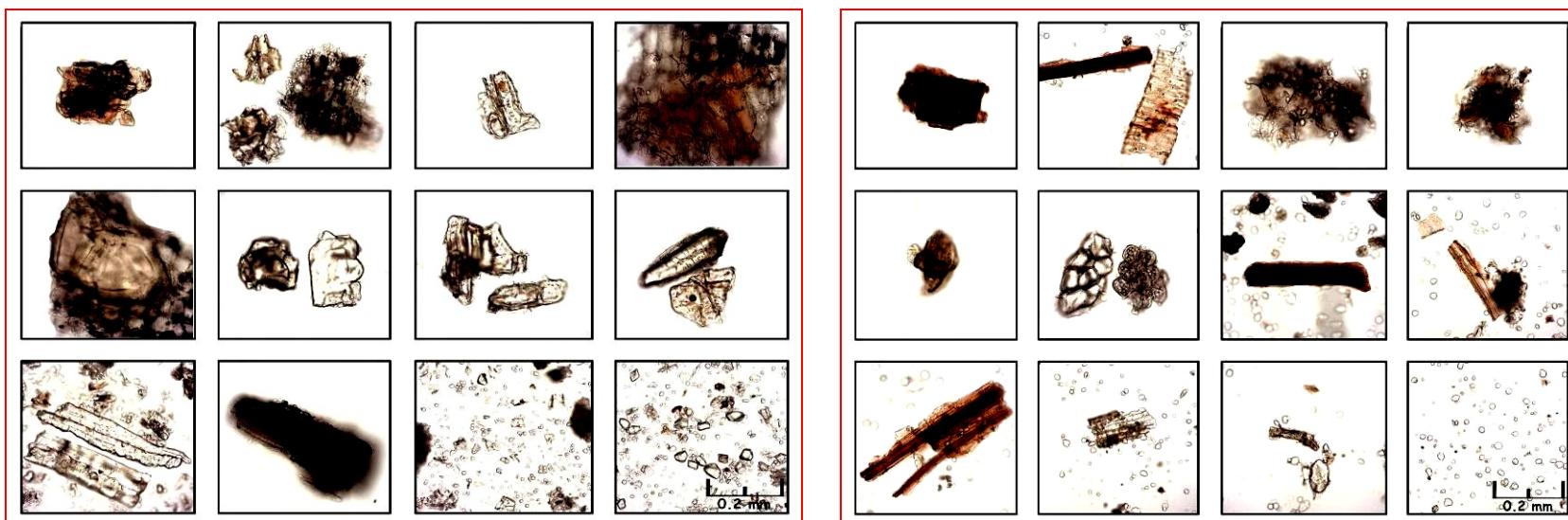
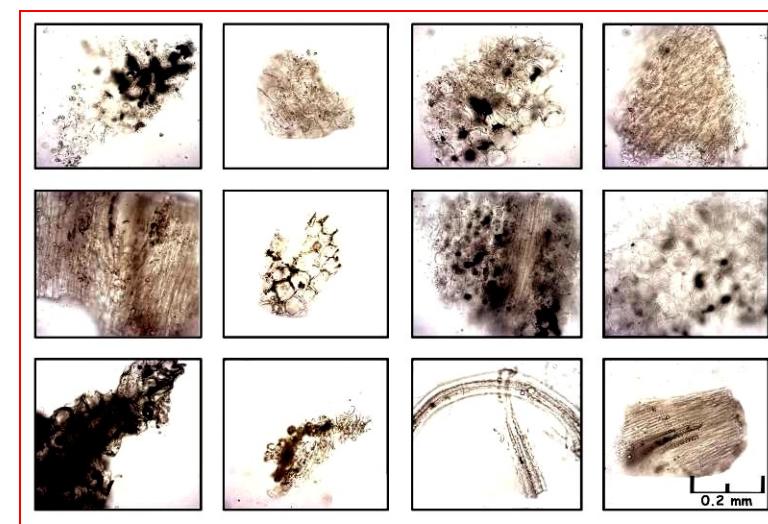
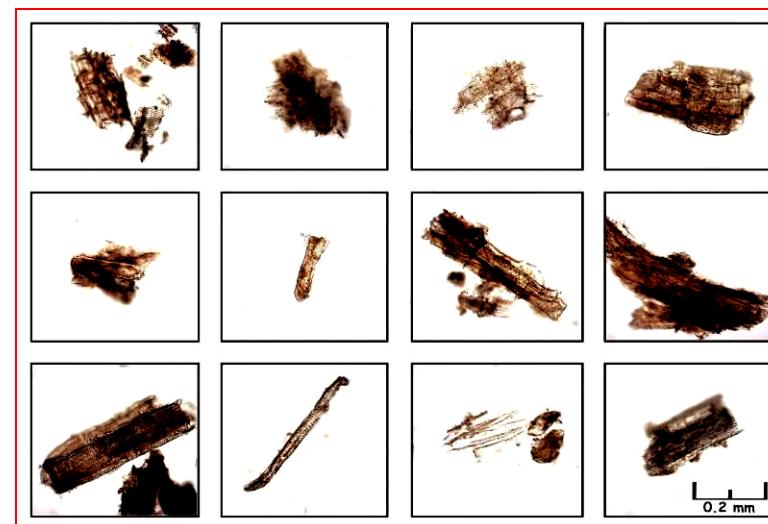
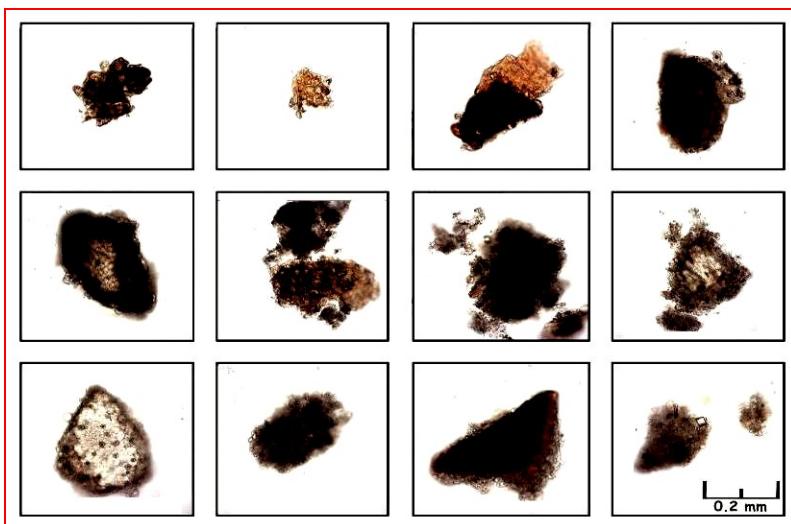
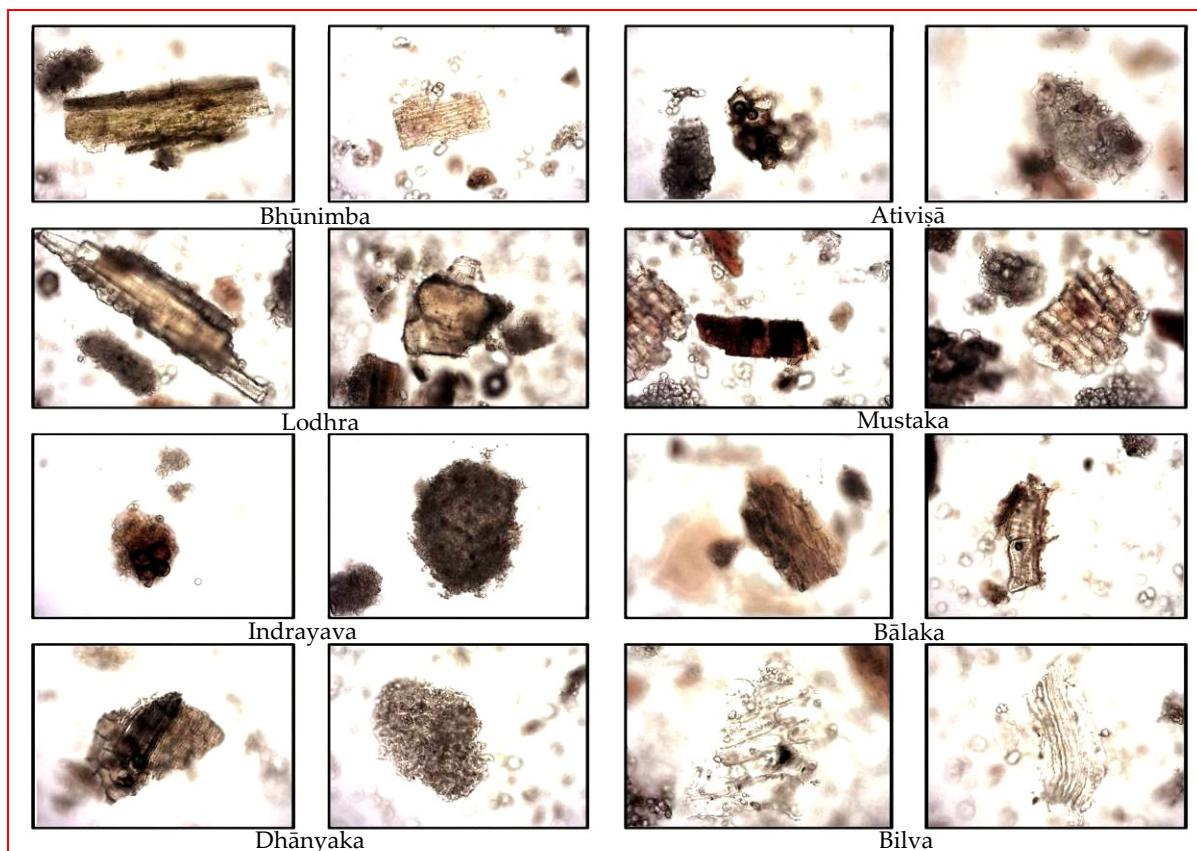

Bilva – Pulp

Figure 2 Microscopy of ingredients of Bhūnimbādi Kvātha Cūrṇa




2.1 Bhūnimba

2.2 Ativisā


2.3 Lodhra

2.4 Mustaka

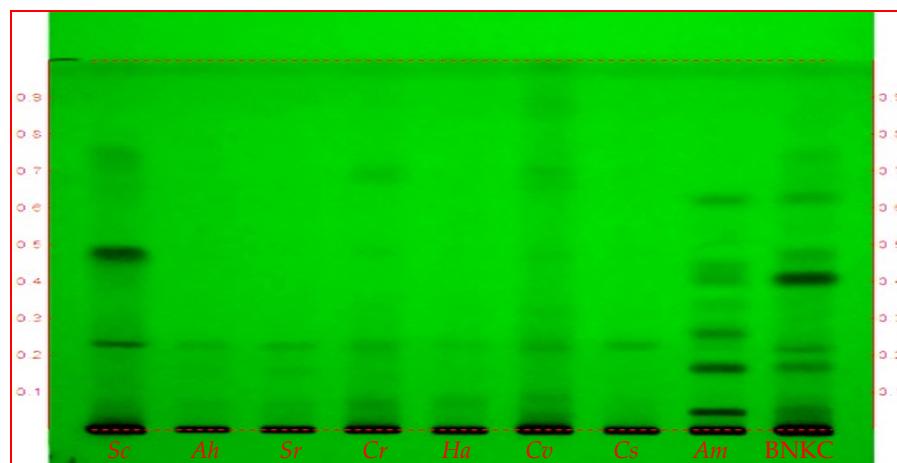
thick walled polygonal cells with yellowish contents, thin and thick walled parenchyma with plenty of starch grains, fragments of spiral and pitted vessels, plenty of scattered simple to 3-compound starch grains (Figure 2.2); fragments of cork cells in surface view and parenchyma with plenty of starch grains are the characters of Ativisā detected in BKC (Figure 3.2). Powder of Lodhra showed characters like fragments of cork cells in surface view, parenchyma with few starch grains, groups of pitted parenchyma, plenty of pitted thick-walled sclereids, fragments of scereidal fibres often sheath of parenchyma with prismatic crystals in it (crystal fibre), plenty of scattered simple to 4-compound tiny starch grains and prismatic crystals of calcium oxalate (Figure 2.3); fragments of thick-walled crystal fibres, pitted stone cells and sclereids are the characters of Lodhra detected in BKC (Figure 3.3). Powder of Mustaka showed mostly reddish-orange coloured cells of cork in surface view, thick-walled rounded to elongated parenchyma with brown content of tannin or pale oleo-resin and starch grains, closely packed fibre-like sclerified cells, spiral and simple pitted vessels, round, oval to elongated starch grains and few rosette crystals of calcium oxalate are scattered throughout (Figure 2.4); fragments of thick-walled cells with reddish orange colour, and thick-walled polygonal parenchyma with oval to elongated starch grains and reddish orange resin content are the characters of Mustaka detected in BKC (Figure 3.4). Powder of Indrayava showed epidermis of testa in surface with reticulately thickened outgrowths, parenchyma with prismatic crystals, parenchyma with reticulate thickening, cells of cotyledon with rosette crystals (Figure 2.5); fragments of testa with reticulate balloon shaped outgrowths, and parenchyma with rosettes and prismatic crystals are the characters of Indrayava detected in BKC (Figure 3.5). Powder of Bālaka showed mostly reddish-brown coloured cells of cork in surface view, group of thick-walled pitted sclereids, thin-walled parenchyma framents, pitted and scalariform vessels, thin walled fibres (Figure 2.6); fragments of reddish brown parenchyma with contents, and thick-walled pitted sclereids in groups are the characters of Bālaka detected in BKC (Figure 3.6). Powder of Dhānyaka showed mostly yellowish coloured polygonal cells of epicarp in surface view, cells of pericarp forming parquetry arrangement, fragments of vittae, thick-walled cells with aleurone grains, oil drops and micro-rosette crystals, thin walled fibres in groups (Figure 2.7); fragments of parquetry cells of pericarp, and cells with micro-rosette crystals and oil drops are the characters of Dhānyaka detected in BKC (Figure 3.7). Powder of Bilva showed mostly colourless cells of pulp in surface view, many with simple starch grains, fragments of spiral vessels (Figure 2.8); parenchyma cells with inter cellular space containing simple starch grains, and fragments of spiral vessels are the characters of Bilva detected in BKC (Figure 3).

Figure 3 Microscopy of Bhūnimbādi Kvātha Cūrṇa

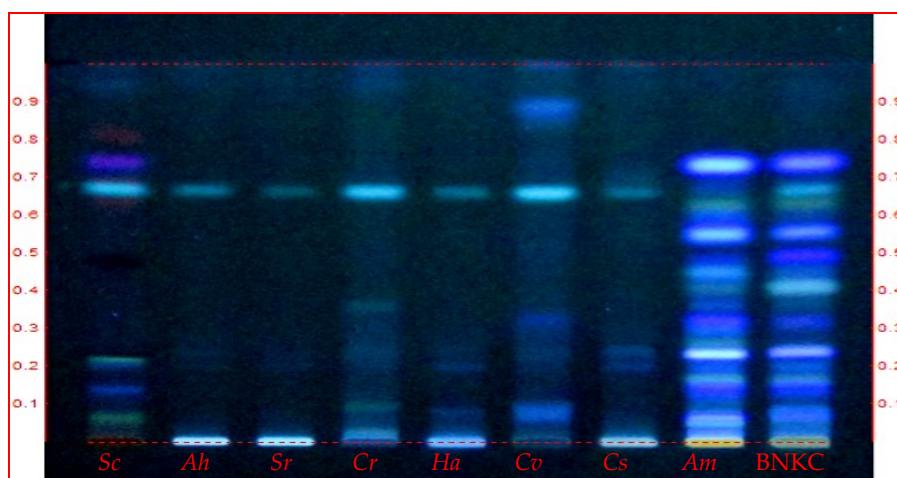
Loss on drying reveals the moisture content; total ash is the indication of total inorganic content; acid insoluble ash is the acid insoluble part of total ash, mainly silica; water soluble ash is the water soluble part of total ash indicating inorganic content without water insoluble inorganic salts like silica; alcohol and water soluble extractive is indicative of percentage active constituents soluble in ethanol and water; and pH is the indicative of acidity of sample. The above physico – chemical constants for all the ingredients used in the preparation of BKC is analysed (Table 1).

Table 1 Physico-chemical constants of raw materials used for the preparation of Bhūnimbādi Kvātha Cūrṇa

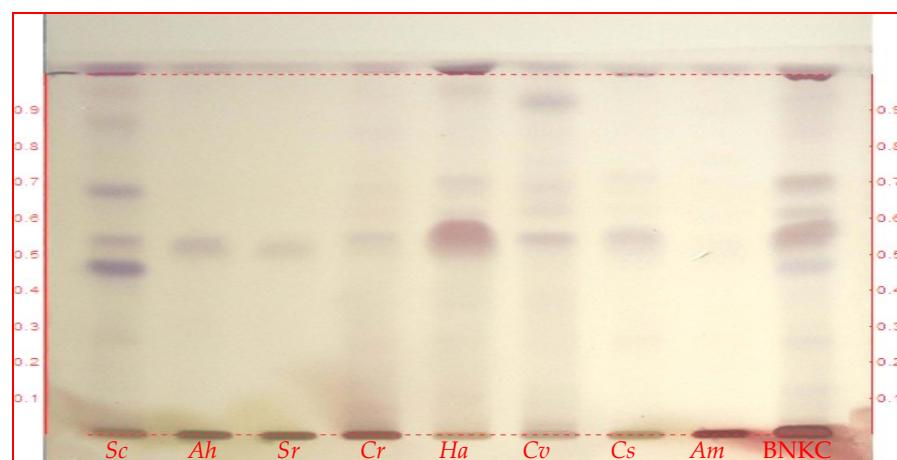
Ingredient	Results expressed as % w/w (n=3) Mean ± SD						
	LOD	TA	AIA	ASE	WSE	HASE	pH
Bhūnimba	12.21 ± 0.03	3.75 ± 0.08	0.75 ± 0.06	6.22 ± 0.38	9.94 ± 0.20	10.99 ± 0.74	5.93 ± 0.06
Ativisā	11.59 ± 0.14	2.44 ± 0.07	0.15 ± 0.07	1.94 ± 0.03	14.97 ± 1.01	18.24 ± 0.02	5.85 ± 0.05
Lodhra	9.79 ± 0.19	12.17 ± 0.01	0.95 ± 0.06	7.705 ± 0.22	24.66 ± 0.28	22.80 ± 0.06	5.10 ± 0.02
Mustaka	11.35 ± 0.02	6.94 ± 0.07	3.60 ± 0.14	1.74 ± 0.02	7.40 ± 0.42	7.34 ± 0.14	5.15 ± 0.01
Indrayava	7.52 ± 0.03	5.58 ± 0.10	0.495 ± 0.01	23.90 ± 0.40	21.47 ± 0.58	14.43 ± 0.32	4.65 ± 0.05
Bālaka	15.35 ± 0.32	10.84 ± 0.08	0.996 ± 0	4.33 ± 0.10	8.84 ± 0.03	6.65 ± 0.57	5.88 ± 0.04
Dhānyaka	8.20 ± 0.09	6.10 ± 0	0.65 ± 0.07	8.68 ± 0.27	11.85 ± 0.22	9.80 ± 0.16	4.94 ± 0.08
Bilva	14.69 ± 0.14	9.96 ± 0.1	0.30 ± 0	8.69 ± 0.02	52.87 ± 0.76	49.69 ± 0.22	6.04 ± 0.04


LOD – Loss on drying at 105°; FM - Foreign matter; TA - Total ash; AIA – Acid Insoluble ash; ASE – Alcohol soluble extractive; WSE – Water soluble extractive; HASE – Hydro alcohol soluble extractive

HPTLC profile has been generated for BKC with ingredients using toluene: ethyl acetate: formic acid (7: 2: 0.2 v/v) as solvent system. Fingerprint pattern of methanolic extract of BKC and its ingredients were documented under short UV, long UV and after derivatisation with vanillin sulphuric acid. Under short UV, Bhūnimba, Ativisā, Lodhra, Mustaka, Indrayava, Bālaka, Dhānyaka, Bilva and BKC showed 3, 2, 3, 5, 2, 8, 1, 8, 8 spots (all green) respectively. Eight spots occurred in BKC were from 8 of ingredients used for the formulation. Out of them, spot with R_f 0.05, 0.08 and 0.46 were detected in Bālaka and Bilva. R_f 0.16 was found in Lodhra, Mustaka and Bilva. R_f 0.41, 0.46 and 0.63 were found in Bilva. R_f 0.74 was found in Bhūnimba. R_f 0.23 was observed in all the tracks (Figure 4.1 and Table 2).


At 366 nm Bhūnimba, Ativisā, Lodhra, Mustaka, Indrayava, Bālaka, Dhānyaka, Bilva and BKC showed 7, 3, 3, 6, 4, 4, 3, 13 and 14 spots (of different fluorescent colours) respectively. Fourteen spots occurred in BKC, of them 13 were from 8 of ingredients used for the formulation. Spot with R_f 0.49 was formed after compounding of the ingredients to BKC. Spot with R_f 0.06, 0.14 and 0.74 were observed in Bhūnimba and Bilva. Spot with R_f 0.17, 0.20, 0.41, 0.45, 0.55, 0.63 were observed in Bilva. Spot with R_f 0.24 was observed commonly in Ativisā, Mustaka, Indrayava, Bālaka, Dhānyaka and Bilva. Spot with R_f 0.31 was observed in Bālaka and Bilva. Spot with R_f 0.36 was seen in Mustaka and Bilva. Spot with R_f 0.67 has occurred in all the samples except in Bilva (Figure 4.2 and Table 3).

After derivatisation with VSA, Bhūnimba, Ativisā, Lodhra, Mustaka, Indrayava, Bālaka, Dhānyaka, Bilva and BKC showed 6, 1, 1, 4, 4, 4, 1 and 7 spots (of different colours) respectively. Out of seven spots occurred in BKC, 6 were from 8 of ingredients used for the formulation, a spot with R_f 0.12 was formed after compounding of the ingredients to BKC. Spot with R_f 0.27 was observed in Bhūnimba and Dhānyaka. Spot with R_f 0.47 was observed in Bhūnimba. Spot with R_f 0.55 was observed in Mustaka, Indrayava, Bālaka and Dhānyaka. Spot with R_f 0.63 was observed in Indrayava, Bālaka and Dhānyaka. Spot with R_f 0.71 was observed in Indrayava and Dhānyaka. Spot with R_f 0.93 was observed in Bālaka (Figure 4.3 and Table 4).


Figure 4 TLC Photo documentation of Bhūnimbādi Kvātha Cūrṇa & its Ingredients

4.1 Under short UV

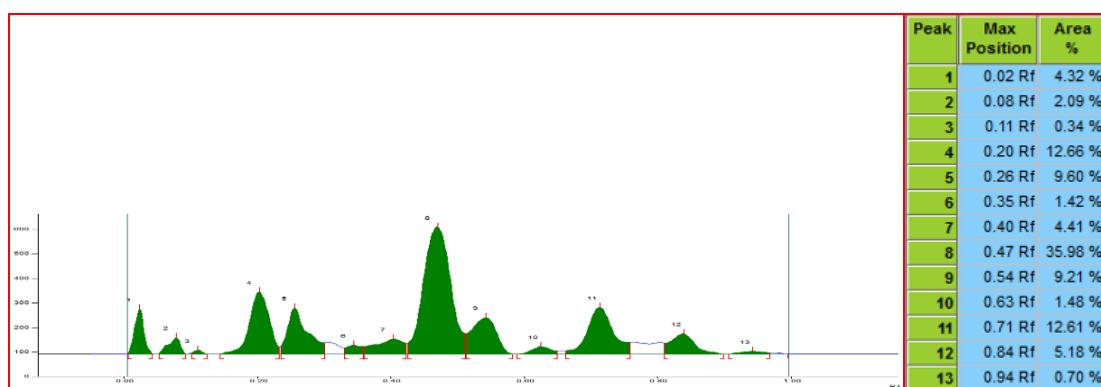
4.2 Under long UV

4.3 Post derivatization with VS

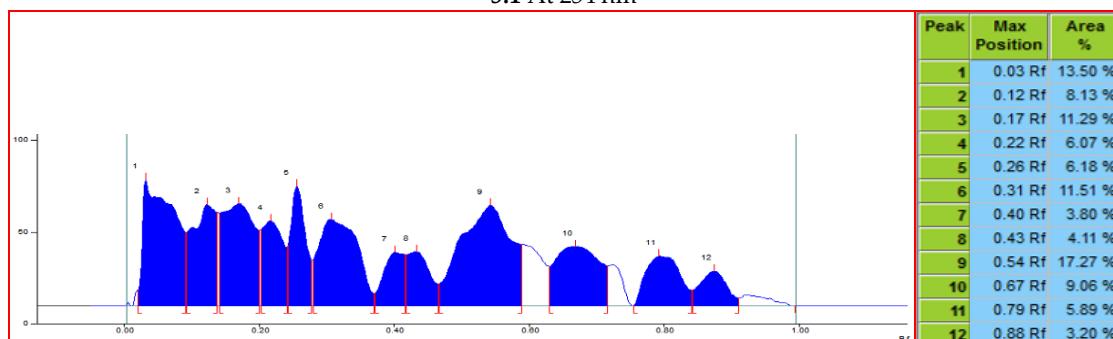
Solvent system - Toluene: Ethyl Acetate: Formic Acid 7: 2: 0.2

Sc – Kirātakita (*Swertia chirata*) – 5 µl; Ah – Ativisā (*Aconitum heterophyllum*) - 5 µl; Sr – Lodhra (*Symplocos racemosa*) – 5 µl; Cr – Mustaka (*Cyperus rotundus*) - 5 µl; Ha – Indrayava (*Holarrhena antidysenterica*) – 5 µl; Cv – Bālaka (*Coleus vettiveroides*) – 5 µl; Cs – Dhānyaka (*Coriandrum sativum*) – 5 µl; Am – Bilva (*Aegle marmelos*) - 5 µl; BKC – Bhūnimbādi Kvātha Cūrṇa – 15 µl; VS – Vanillin Sulphuric acid spray reagent.

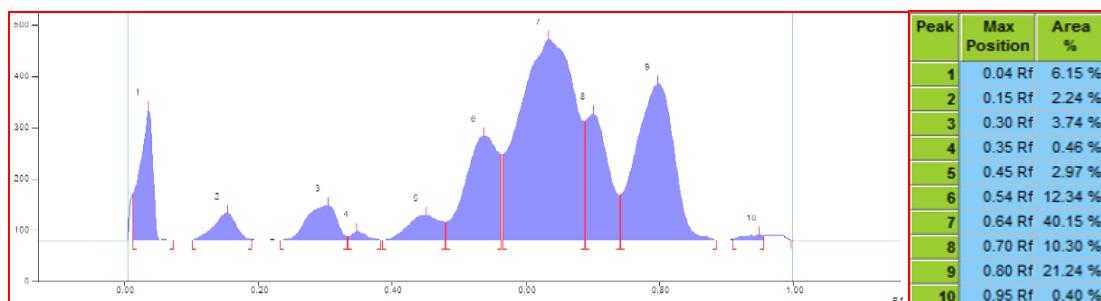
Table 2 R_f values of Bhūnimbādi Kvātha Cūrṇa (BKC) & its Ingredients at 254 nm


Bhūnimba	Ativiṣā	Lodhra	Mustaka	Indrayava	Bālaka	Dhānyaka	Bilva	BKC
-	-	-	-	-	0.05 L Green	-	0.05 D Green	0.05 L Green
-	0.06 L Green	0.06 L Green	0.06 L Green	0.06 L Green	-	-	-	-
-	-	-	-	-	0.08 L Green	-	-	0.08 L Green
-	-	0.16 L Green	0.16 L Green	-	-	-	0.16 Green	0.16 L Green
0.23 Green	0.23 L Green	0.23 L Green	0.23 L Green	0.23 L Green	0.23 L Green	0.23 L Green	0.23 L Green	0.23 L Green
-	-	-	-	-	-	-	0.26 Green	-
-	-	-	-	-	0.32 L Green	-	-	-
-	-	-	-	-	-	-	0.34 L Green	-
-	-	-	-	-	-	-	0.41 L Green	0.41 D Green
-	-	-	-	-	0.46 L Green	-	0.46 L Green	0.46 Green
0.48 Green	-	-	0.48 L Green	-	-	-	-	-
-	-	-	-	-	-	-	0.63 L Green	0.63 L Green
-	-	-	-	-	0.65 L Green	-	-	-
-	-	-	0.69 L Green	-	0.69 L Green	-	-	-
0.74 L Green	-	-	-	-	-	-	-	0.74 L Green
-	-	-	-	-	0.87 L Green	-	-	-
*3	2	3	5	2	8	1	8	8

*Number of spots; Texts in highlight are spots with corresponding R_f values in BKC and ingredients. L – Light, D – Dark


Densitometric scan of BKC showed 13, 12 and 10 peaks at 254 nm, 366 nm and 540 nm after derivatisation with vanillin sulphuric acid spray reagent (Figure 5).

Methanolic extract of BKC was analysed using ^1H NMR spectroscopy. The fingerprint showed peaks at 5.4, 3.6, 3.5, 2.1, 1.6, 1.3 and 0.9 ppm (Figure 6). ^1H NMR has been used as fingerprint for polyherbal formulation for the first time (Figure 6).


Figure 5 Densitometric scan of Bhūnimbādi Kvātha Cūrṇa

5.1 At 254 nm

5.2 At 366 nm

5.3 At 540 nm (Post derivatisation)

Figure 6 ^1H -NMR spectroscopy of Bhūnimbādi Kvātha Cūrṇa

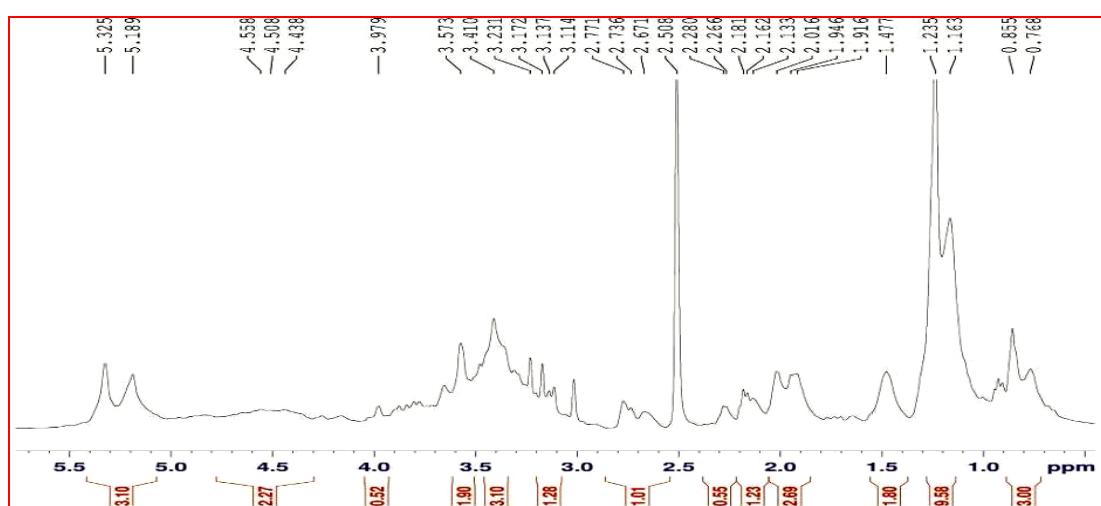


Table 3 R_f values of Bhūnimbādi Kvātha Cūrṇa (BKC) & its Ingredients at 366 nm

Bhūnimba	Ativīśā	Lodhra	Mustaka	Indrayava	Bālaka	Dhānyaka	Bilva	BKC
0.06 F Green	-	-	-	-	-	-	0.06 F Purple	0.06 F Purple
-	-	-	0.08 F L Green	0.08 F L Blue	0.08 F Blue	-	-	-
0.14 F Purple	-	-	-	-	-	-	0.14 F Purple	0.14 F Purple
-	-	-	-	-	-	-	0.17 F L Blue	0.17 F Blue
-	0.19 F L Blue	0.19 F L Blue	0.19 F L Blue	0.19 F L Blue	-	0.19 F L Blue	-	-
-	-	-	-	-	-	-	0.20 F Blue	0.20 F L Blue
0.22 F Green	-	0.22 F L Blue	-	-	-	-	-	-
-	0.24 F L Blue	-	0.24 F L Blue	0.24 F L Blue	0.24 F L Blue	0.24 F L Blue	0.24 F Purple	0.24 F Purple
-	-	-	-	-	-	-	0.26 F L Green	-
-	-	-	-	-	0.31 F Purple	-	0.31 F Pink	0.31 F Purple
-	-	-	0.36 F L Green	-	-	-	0.36 F L Green	0.36 F L Green
-	-	-	-	-	-	-	0.41 F L Green	0.41 F Green
-	-	-	-	-	-	-	0.45 F Blue	0.45 F L Blue
-	-	-	-	-	-	-	-	0.49 F Pink
-	-	-	-	-	-	-	0.55 F Blue	0.55 F Purple
-	-	-	-	-	-	-	0.63 F G Pink	0.63 F Y Green
0.67 F M Blue	0.67 F M Blue	0.67 F M Blue	0.67 F M Blue	-	0.67 F M Blue			
0.74 F Pink	-	-	-	-	-	-	0.74 F M Blue	0.74 F Purple
0.81 F Red	-	-	-	-	-	-	-	-
0.95 F L Blue	-	-	0.95 F L Blue	-	-	-	-	-
7*	3*	3*	6*	4*	4*	3*	13*	14*

*Total number of spots; Texts in highlight are spots with corresponding R_f values in BKC and ingredients. F – Fluorescent, L – Light, M – Medium, Y – Yellowish, G – Greenish

Table 4 R_f values of Bhūnimbādi Kvātha Cūrṇa (BKC) & its Ingredients post derivatisation with VSA

Bhūnimba	Ativisā	Lodhra	Mustaka	Indrayava	Bālaka	Dhānyaka	Bilva	BKC
-	-	-	0.07 L Brown	-	-	-	-	-
-	-	-	-	-	-	-	-	0.12 Grey
0.27 L Brown	-	-	-	-	-	0.27 Grey	-	0.27 Grey
0.47 Violet	-	-	-	-	-	-	-	0.47 Purple
-	-	0.51 Grey	-	-	-	-	-	-
0.53 Purple	0.53 Purple	-	-	-	-	-	0.53 Grey	-
-	-	-	0.55 Purple	0.55 Brown	0.55 Violet	0.55 Violet	-	0.55 Brown
-	-	-	-	0.63 Grey	0.63 Violet	0.63 Grey	-	0.63 Brown
0.68 Purple	-	-	0.68 Grey	-	0.68 Violet	-	-	-
-	-	-	-	0.71 Grey	-	0.71 Grey	-	0.71 Brown
-	-	-	0.84 Purple	-	-	-	-	-
0.87 Purple	-	-	-	-	-	-	-	-
-	-	-	-	-	0.93 Violet	-	-	0.93 Grey
0.95 Purple	-	-	-	0.95 Grey	-	-	-	-
6*	1*	1*	4*	4*	4*	4*	1*	7*

*Total number of spots; Texts in highlight are spots with corresponding R_f values in BKC and ingredients. L – Light

CONCLUSION

A comprehensive monograph on standards for quality of Bhūnimbādi Kvātha Cūrṇa of Ayurvedic Formulary of India^[12] (AFI, 2011) has been proposed.

Definition:

Bhūnimbādi Kvātha Cūrṇa is a coarse powder preparation made with the ingredients in the Formulation Composition given below:

Formulation composition^[12]

Bhūnimba

(Kirātatikta)	<i>Swertia chirata</i> Buch. Ham.	Pl.
Ativisā	<i>Aconitum heterophyllum</i> Wall. ex. Royle	Rt.
Lodhra	<i>Symplocos racemosa</i> Roxb.	St. Bk.
Mustaka		
(Musta)	<i>Cyperus rotundus</i> Linn.	Rz.
Indrayava	<i>Holarrhena antidysenterica</i> Wall.	Sd.
Bālaka		
(Hrivera)	<i>Coleus vettiveroides</i>	Rt.
Dhānyaka	<i>Coriandrum sativum</i> Linn.	Fr.
Bilva	<i>Aegle marmelos</i> Carr.	Fr. Pp.

Method of preparation

- All the ingredients of Pharmacopoeial quality were washed properly.
- Dried raw drugs of were coarsely powdered separately.
- The individual powders were passed separately through sieve number 10 (1700 μm IS Sieve).
- Each ingredient was weighed separately and mixed together in equal proportions.
- Passed through sieve number 10 to obtain a homogenous blend.
- Packed it air-tight container and stored away from direct sunlight.

Characteristics and preservation

Kvātha Cūrṇa retains potency for two year and should be kept in an air tight container. They are also called Śṛta, Nirvūha and Kaśaya. Kvātha Cūrṇa can be used for preparing Kaśaya, Hima, Phānta, etc^[12]. (AFI, 2011).

Description

Yellowish brown coloured, coarse powder with characteristic odour and bitter taste.

Identification

Microscopy

The powder shows fragments of leaf lamina with chlorophyll and epidermis in surface view (Bhūnimba); fragments of cork cells in surface view and parenchyma with plenty of starch grains (Ativisā); fragments of thick-walled crystal fibres, pitted stone cells and sclereids (Lodhra); fragments of thick-walled cells with reddish orange colour, and thick-walled polygonal parenchyma with oval to elongated starch grains and reddish orange resin content (Mustaka); fragments of testa with reticulate balloon shaped outgrowths, and parenchyma with rosettes and prismatic crystals (Indrayava); fragments of reddish brown parenchyma with contents, and thick-walled pitted sclereids in groups (Bālaka); fragments of parquetry cells of pericarp, and cells with micro-rosette crystals and oil drops (Dhānyaka); and parenchyma cells with inter cellular space containing simple starch grains, and fragments of spiral vessels (Bilva).

Physico-chemical Parameters:

Loss on drying at 105°	: Not more than 9.23 %
Total ash	: Not more than 5.67 %
Acid-insoluble ash	: Not more than 0.60 %
Water-soluble ash	: Not more than 1.49 %
Alcohol -soluble extractive	: Not less than 5.54 %
Water - soluble extractive	: Not less than 13.39 %
Hydro – alcohol soluble extractive	: Not less than 15.44 %
pH (10% aqueous solution)	: Not more than 5.25

Thin Layer Chromatography

Under 254 nm 8 spots with R_f values of 0.05, 0.08, 0.16, 0.23, 0.41, 0.46, 0.63, 0.74 (All Green colour) were seen.

Under 366 nm 14 spots with R_f value of 0.06, 0.14 (Fluorescent Purple), 0.17, 0.20 (Fluorescent Blue), 0.24, 0.31 (Fluorescent Purple), 0.36, 0.41 (Fluorescent Green), 0.45 (Fluorescent Blue), 0.49 (Fluorescent Pink), 0.55 (Fluorescent Purple), 0.63 (Fluorescent Green), 0.67 (Fluorescent Blue), 0.74 (Fluorescent Purple) were seen.

After derivatisation with vanillin-sulphuric acid 7 spots with R_f value of 0.12 (Grey), 0.27 (Grey), 0.47 (Purple), 0.55 (Brown), 0.63 (Brown), 0.71 (Brown), 0.93 (Grey) were seen.

$^1\text{H-NMR}$

The ^1H NMR fingerprint shows peaks at 5.4, 3.6, 3.5, 2.1, 1.6, 1.3 and 0.9 ppm.

Important therapeutic uses

Asthama, cough, fever due to pitta dosa, bleeding disorder, fever.^[12]

Substitutes and adulterants

Plant of *Andrographis paniculata* Nees is used as substitute for Bhūnimba. Pieces of stem in Bālaka and pericarp pieces and seeds in Bilva are found to be adulterants; these can be detected by macroscopic examination.

Dose

24 to 48 g twice a day.^[12]

Sahapana

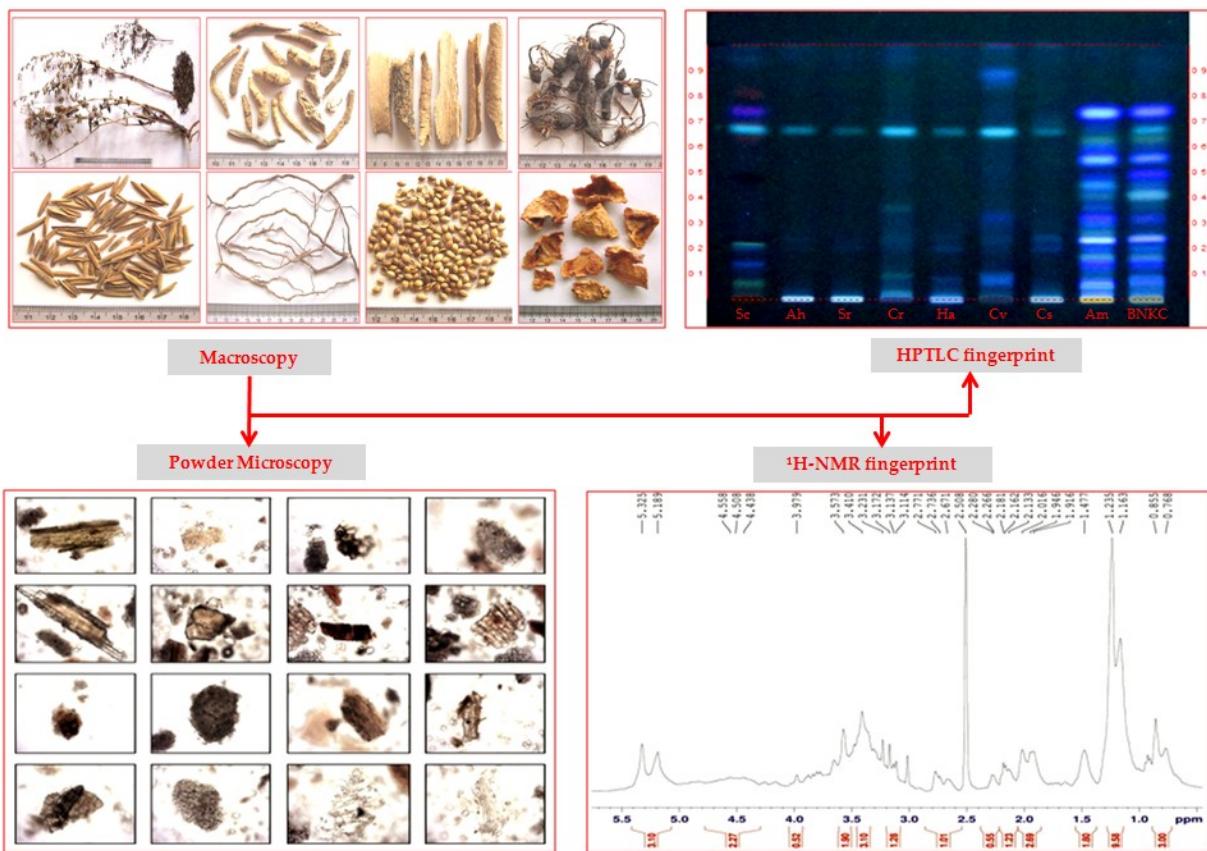
Honey.^[12]

ACKNOWLEDGEMENT

This work was supported by the scheme of Seed Money for Young Scientists for Research (SMYSR) Project (No. VGST/P-3/SMYSR/GRD-291/2013-14 dated January 28, 2013) by Vision Group on Science and Technology (VGST), Govt. of Karnataka. Heartfelt thanks to Dr. S. Ananth Raj, Consultant, VGST, for the kind support. Authors are grateful to Dr. D. Veerendra Heggade, President, SDME Society, Ujire for the support. Guidance from Dr. R. Muralidhar, Senior Manager, SDM Ayurveda Pharmacy is duly acknowledged.

CONFLICTS OF INTEREST

Nil


REFERENCES

1. Agarwal S, Singh RH. Ayurveda Jan, Proceedings of International Congress; 2002;209–21.
2. European Agency for the Evaluation of Medicinal Products (EMEA). Guidelines on Quality of Herbal Medicinal Products/Traditional Medicinal Products. EMEA/CVMP/81400 Review. London. European Agency for the Evaluation of Medicinal Products; 2005.
3. World Health Organization (WHO). General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine. Geneva: World Health Organization; 2002.
4. World Health Organization (WHO). Basic Tests for Drugs, Pharmaceutical Substances, Medicinal Plant Materials and Dosage Forms. Geneva: World Health Organization; 1998.
5. World Health Organization (WHO). Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials, Good Manufacturing Practices and Inspection. Geneva: World Health Organization; 1996a.
6. World Health Organization (WHO). Guidelines for the Assessment of Herbal Medicines. WHO Technical Report Series. Geneva: World Health Organization; 1996b: 863.
7. World Health Organization (WHO). The Use of Essential Drugs. Eighth report of the WHO Expert committee. Geneva: World Health Organization; 1990.
8. World Health Organization (WHO). The International Pharmacopoeia, Quality Specifications for Pharmaceutical Substances, Excipients, and Dosage Forms. Geneva: World Health Organization; 1988a.
9. World Health Organization (WHO). Quality Control Methods for Medicinal Plant Materials. Geneva: World Health Organization; 1988b.
10. Kunle, Oluyemisi Folashade, Egharevba, Henry Omorogie and Ahmadu, Peter Ochogu. Standardization of herbal medicines - A review. *Int J Biodivers Conserv* 2012;4:101-12.
11. Sahoo R, Swain PK. Standardization of Lasunadi Vati: An Ayurvedic polyherbal Formulation. *Int J Pharma World Res* 2011;2;2:1-9.
12. The Ayurvedic Formulary of India (AFI). Part-III. 1st ed. New Delhi: Ministry of Health and Family Welfare, Department of and Homoeopathy (AYUSH); 2011; p.73, 91.
13. The Ayurvedic Pharmacopoeia of India (API). Part II. 1st ed., Vol III. New Delhi: Ministry of Health and Family Welfare, Dept. of Ayurveda, Yoga, Unani, Siddha and Homoeopathy; 2010; p.34-7.
14. Pushpendra, KN Sunil Kumar, Priyadarshini, BS Holla, B Ravishankar, B Yashovarma. Simple modus operandi to bring down microbial load of herbal drugs to Pharmacopoeial limit - A study on ingredients of Hutabhusgadi cūrṇa. *J Sci Innov Res* 2014;2:1040-3.
15. The Ayurvedic Pharmacopoeia of India. Part I. 1st ed., Vol VI. New Delhi: Ministry of Health and Family Welfare, Dept. of AYUSH; 2008; p.233-91.
16. Sethi PD. High Performance Thin Layer Chromatography. 1st ed., Vol. 10. New Delhi: CBS Publishers and Distributors; 1996; p.1-56.
17. Stahl E. Thin layer Chromatography: a laboratory hand book. Berlin-Heidelberg-New York: Springer-Verlag; 1969; p.52-86.
18. Wagner H, Bladt S. Plant Drug Analysis. 2nd ed. Berlin-Hiedelber: Springer-Verlag; 1996.
19. Kim HK, Verpoorte R. Sample preparation for plant metabolomics. *Phytochem Anal* 2010;21:4-13.

ABOUT FIRST/CORRESPONDING AUTHOR

Dr. KN Sunil Kumar PhD is working as Senior Research Officer in Pharmacognosy and Phytochemistry at SDM Ayurveda and Allied Sciences, Udupi, India 574118. He obtained Senior Research Fellowship from ICMR, Young Scientist Award, VGST, Govt. Of Karnataka and Dr. PD Sethi award for 5 best HPTLC papers. He is investigating projects on standardization of Ayurvedic formulation from agencies like UGC, VGST, RGUHS and PCIM (AYUSH). He is Author of 69 research papers and 55 monographs on pharmacognosy, phytochemistry and standardization of medical plants/products. He is also serving as Chief editor Journal of Ayurvedic and Herbal medicine and subject editor Pharmacognosy Ayu-An international Quarterly Journal of Research in Ayurveda.

GRAPHICAL ABSTRACT

Cite this article as: Koppala Narayana Sunil Kumar, Priyadarshini, Basaviah Ravishankar, Betkeri Yashovarma. Quality standards for Bhūnimbādi Kvātha Cūrṇa. *J Ayu Med Sci* 2016;1(1):19-33. DOI: 10.5530/jams.2016.1.4

©Journal of Ayurveda Medical Sciences
– Herbal Research Guidance and Solutions' (HRGS) Ayurveda Journal