

Journal of Ayurveda Medical Sciences

*Refereed, Indexed, Peer reviewed, Open access, Quarterly
Journal for Rapid Publication of Ayurveda and Other
Traditional Medicine Research*

J Ayu Med Sci | 2016 | Vol 1 | Issue 1 (Jul – Sep)

ISSN: Awaited

www.jayumedsci.com

©Journal of Ayurveda Medical Sciences – HRGS' Ayurveda Journal

Chemical analysis and anti-oxidant properties of Hutabugadi Curna - A polyherbal Ayurveda formulation

Priyadarshini,¹ Koppala Narayana Sunil Kumar,¹ Pushpendra,² Bantwal Shivarama Holla,² Basaviah Ravishankar¹

¹SDM Centre for Research in Ayurveda and Allied Sciences, Laxminarayana Nagar, Kuthpadi, Udupi, INDIA – 574 118. ²SDM College (Autonomous), Ujire, Belthangadi Taluk, Dakshina Kannada, INDIA – 574 240

*Correspondence: Email: sunilkumarnarayanan@gmail.com, Mobile: +91-8050230864

ABSTRACT

Introduction: Hutabugadi curna (HC) is a polyherbal formulation in Ayurvedic formulary of India (AFI) for treatment of agnimandya (digestive impairment), pandu (anemia), sopha (oedema) and arsa (piles). The current paper is aimed to investigate physico-chemical properties, preliminary phytochemical and proximate composition, including its anti oxidant activity *in-vitro*. **Methods:** Estimation of physical parameter, proximate composition, phytochemical screening, total phenol content and antioxidant activity was done using standard methodology. **Results:** Physico-chemical and proximate analysis was done to access the composition of the formula. Preliminary phytochemical tests of extracts of HC were performed to find out the different chemical moieties in the formula. Total phenolic content of HC was determined using Folin-Ciocalteau's reagent using tannic acid as a calibration standard. Reducing power assay (RPA) and DPPH (2, 2-diphenyl-1-picryl hydrazyl) radical scavenging capacity were carried out to evaluate antioxidant activity *in vitro*. Physical constants and quantity of total protein, carbohydrate, fat and fibre were estimated to obtain calorific value. **Conclusion:** Phyto chemical analysis revealed the presence of carbohydrates, saponins, tannins, phenols and coumarins. Total phenolic content of HC was found to be 23.90 mg/g tannic acid equivalents. The classical multidrug formula showed good antioxidant activity.

KEYWORDS

Anti oxidant activity, Ayurvedic formulary of India, phytochemical, proximate analysis, polyherbal formulation.

Received: 27.08.2016

Accepted: 10.09.2016

DOI: 10.5530/jams.2016.1.6

Ingestion of natural antioxidants has been associated with reduced risks of cancer, cardiovascular disease, diabetes, and other diseases associated with ageing.^[1,2] Free radicals contribute to more than one hundred disorders in humans including atherosclerosis, arthritis, ischemia and reperfusion injury of many tissues central nervous system injury, gastritis, cancer and AIDS.^[3] Due to depletion of immune system natural antioxidants in different maladies consuming antioxidants as free radical scavengers may be necessary.^[4] The number of reports on isolations of natural antioxidants, mainly of plant origin, has increased immensely during the last decade.^[5] Polyherbal formulations are not being studies extensively for their potential as antioxidants.

Hutabugadi churna (HC) of Ayurvedic formulary of India (AFI) is a polyherbal drug formulated using one part of ingredients viz. Hutabugha (*Plumbago zeylanica* Linn. - root), Ajamoda (*Apium leptophyllum* (Pers.) F.V.M.ex Benth - fruit), Saindhava Lavana (Rock salt), Magadha (*Piper longum* Linn. - fruit), Marica (*Piper nigrum* Linn. - fruit), and 5 parts of inredient Pathya (*Terminalia chebula* Retz. – pericarp) (Figure 1). The therapeuti uses of HC as per Ayurveda are in treatment of Agnimandya (digestive impairment), pandu (anemia), sopha (oedema) and arsa (piles).^[6] In the present study, the formulation was subjected to physical, proximate, and preliminary phytochemical analysis. Methanolic extract of HC was screened for total phenol content, 2, 2-Diphenyl-1-picryl-hydrazyl radical (DPPH) scavenging and reducing power assay to evaluate its antioxidant profile *in-vitro*.

MATERIALS AND METHODS

Preparation of Hutabugadi curna

HC was prepared as per procedure detailed in Ayurvedic Pharmacopoeia of India.^[7]

Preparation of extract

Ten grams of HC was exhaustively extracted in Soxhlet apparatus with 150 ml of methanol. The filtrate was evaporated to dryness and the residue was used for phytochemical screening and antioxidant activity profiling.

Physical parameters

Determination of bulk density, tapped density, Carr's index and Hausner's ratio was done using standard procedure.^[8]

Proximate analysis

Determination of fat, fibre, protein,^[9] and carbohydrate^[10] was done using standard procedures. Calorific value was determined by the formula: (Carbohydrate × 4) + (Fat × 9) + (Protein × 4).^[9]

Figure 1. *Hutabhusadi curna*

Phytochemical screening

Phytochemical tests for methanolic extract were performed by standard method.^[11]

Estimation of total phenol: The total phenol content of HC was determined by Folin – Ciocalteau method with slight modification, using tannic acid as standard.^[12]

Anti oxidant activity of Diphenyl - picryl hydrazyl (DPPH): The antioxidant activity of extract determined by Percent of inhibition as follow: % Inhibition = [(A0 - A1)/A0] × 100.^[13]

Reducing power of the HC extract was determined by standard methodology.^[14]

RESULTS AND DISCUSSION

Physical parameters like bulk density, tap density, Carr's index and Hausner's ratio were obtained for HC. Protein, fat and carbohydrate are sources of energy in diet and the amount was found to be 4.23 %, 3.35 % and 1.99 % respectively (Table 1). HC revealed the presence of carbohydrates, coumarin, tannin and phenolic compounds (Table 2). The total phenolic content of the extract was determined to be 23.90 mg/g tannic acid equivalents. The concentration 6 µg/ml of HC showed maximum scavenging activity of 67.05% with IC₅₀ value of 4.27 µg/ml (Table 3). Reducing power of 6 µg/ml concentration of HC was found to be OD 0.122 at 700 nm (Table 4).

Amount of fibre was found to be 0.10 %. Hence calorific value = (4.23 × 4) + (3.35 × 9) + (1.99 × 4) = 16.92 + 30.15 + 7.96 = 55.03 Kcal.

Table 1. Physico-chemical parameters of *Hutabhusadi curna*

Parameter	Results
Bulk Density (gm/ml)	0.455
Tap Density (gm/ml)	0.556
Carr's Index	26.2
Hausner's Ratio	0.818
Protein (%w/w)	4.23
Carbohydrate (%w/w)	1.99
Fat (%w/w)	3.35

Table 2. Phytochemical screening of methanolic extract of *Hutabhusadi curna*

Tests	Color if positive	Methanolic extract	Inference
<i>Alkaloid</i>			
Dragendorff's test	Orange red precipitate	No precipitate	Absent
Wagner's test	Reddish brown precipitate	No precipitate	
Mayer's test	Dull white precipitate	No precipitate	
Hager's test	Green yellowish turbid	No precipitate	
<i>Carbohydrate</i>			
Molisch's test	Violet ring	Violet ring at the bottom	Present
Fehling's test	Brick red precipitate	Brick red precipitate	
Benedict's test	Red precipitate	Reddish brown ppt	
<i>Sterols</i>			
Liebermann-Buchard test	Dark green solution	Greenish yellow colour in the upper layer	Absent
Salkowski test	Bluish red to cherry red	Brown colour in the lower layer	

<i>Saponins</i>			
On shaking with water	Stable froth	Stable froth formed	Present
<i>Tannins</i>			
With FeCl ₃	Dark blue or green color	Dark blue colour	Present
<i>Flavonoids</i>			
Shinoda's test	Red to pink	Yellow colour	Absent
<i>Phenol</i>			
with FeCl ₃	Blue to blue black, green	Bluish black colour	Present
<i>Coumarins</i>			
With 2N NaOH	Dark yellow	Yellow colour	Present
<i>Triterpenoids</i>			
Liebermann-Buchard test	Pink	Brown colour	Absent
Tin and thionyl chloride test	Pink	Brown colour	
<i>Resins/ Wax</i>			
With distilled water, acetone	Turbidity	No turbidity	Absent
<i>Quinone</i>			
Dark pink, purple, red	Dark pink, purple, red	Brown	Absent
<i>Amino acids</i>			
Violet colour	Violet colour	Brown	Absent
<i>Carboxylic acid</i>			
Brisk effervescence	Brisk effervescence	Brown	Absent

Table 3. DPPH assay of *Hutabhusadi curna*

Concentration	OD at 517 nm	% Inhibition
Control	0.343 ± 0.004	0
1 µg/ml	0.299 ± 0.001***	12.83
2 µg/ml	0.262 ± 0.005***	23.62
3 µg/ml	0.213 ± 0.002***	37.9
4 µg/ml	0.186 ± 0.0008***	45.77
5 µg/ml	0.134 ± 0.003***	60.93
6 µg/ml	0.113 ± 0.004***	67.05

Value = Mean ± SEM; IC₅₀ 4.27 µg/ml ***P<0.001 in comparison to control**Table 4. Reducing power of assay of *Hutabhusadi curna***

Concentration	OD at 700 nm
Control	0.05 ± 0
1 µg/ml	0.060 ± 0.002728 ^{ns}
2 µg/ml	0.078 ± 0.001667**
3 µg/ml	0.084 ± 0.001453***
4 µg/ml	0.093 ± 0.001667***
5 µg/ml	0.107 ± 0.01048***
6 µg/ml	0.122 ± 0.001202***

Value = Mean ± SEM; OD – optical density ^{ns} P>0.05 in comparison to control **P<0.01 in comparison to control ***P<0.001 in comparison to control

The medicinal plants are useful for healing as well as for curing of human diseases because of the presence of phytochemical constituents.^[15] The test formulation HC contains 5 herbal and a mineral ingredient of different chemical nature. Carbohydrates perform numerous roles in living organisms. Polysaccharides serve for the storage of energy, and as structural components. Ribose is an important component of coenzymes and the backbone of the genetic molecule known as RNA. The related deoxyribose is a component of DNA. Saccharides and their derivatives include many other important biomolecules that play key roles in the immune system, fertilization, preventing pathogenesis, blood clotting, and development.^[16] Coumarin has clinical medical value as an edema modifier. Coumarin and other benzopyrones, such as 5,6-benzopyrone, 1,2-benzopyrone, diosmin, and others, are known to stimulate macrophages to degrade extracellular albumin, allowing faster resorption of

edematous fluids.^[17] Tannins are anticarcinogenic and antimutagenic. Tannins and related compounds inhibit superoxide radicals. The growth of many fungi, yeasts, bacteria, and viruses was inhibited by tannins. Tannins thus serve as a natural defense mechanism against microbial infections. Tannins can also be used in food processing to increase the shelf-life of certain foods. Tannins have also been reported to exert physiological effects such as acceleration of blood clotting, reduce blood pressure, decrease the serum lipid level, produce liver necrosis, and modulate immunoresponses.^[18] Phenolics are antioxidants with redox properties, which allow them to act as reducing agents, hydrogen donators, and singlet oxygen quenchers.^[19] Antioxidants block the process of oxidation by neutralizing free radicals. It has been suggested that the antioxidant activity of plants might be due to their phenolic compounds.^[20] In addition to their roles as antioxidants, these compounds exhibit a wide spectrum of medicinal properties, such as anti-allergic, anti-inflammatory, anti-microbial, anti-thrombotic, cardio-protective and vasodilatory effect.^[21] In present study antioxidant activity of HC was performed using two *in-vitro* models; DPPH scavenging and reducing power assay. DPPH is a stable nitrogen centred free radical, the colour of which changes from violet to yellow upon reduction by either the process of hydrogen or electron donation which is measured at 517 nm. From the result it was found that radical scavenging activity of HC extract increased with increasing concentration.

The presence of antioxidants in the sample would result in the reducing Fe^{3+} to Fe^{2+} by donating an electron resulting in light green colour, which was measured at 700 nm. HC showed increasing reductive power on increase of concentration. Higher the absorbance of the sample, better will be reducing activity.

CONCLUSION

The physical properties, phytochemical composition and antioxidant properties of *Hutabhuagadi curna* AFI was tested methodically. Further research in this regard would throw more light on multi-herb Ayurvedic therapeutics.

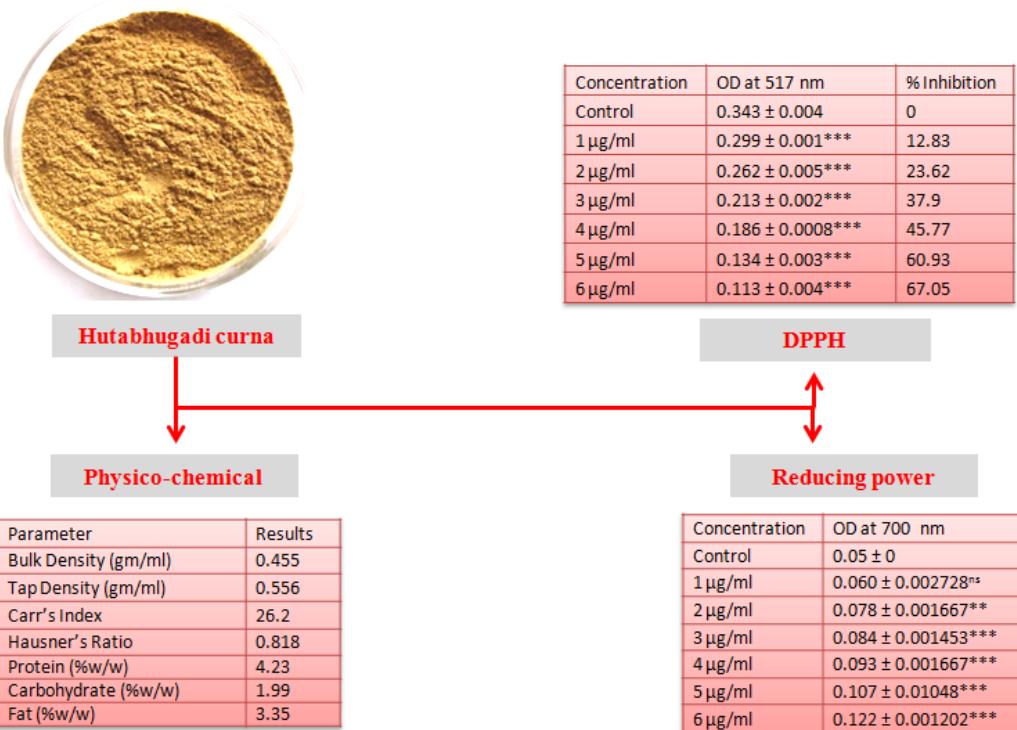
ACKNOWLEDGEMENT

This work was supported by UGC Major Research Project (F. No. 41-733/2012 (SR) dated 23rd July, 2012. Authors are grateful to Dr. D. Veerendra Heggade, President, SDME Society, Ujire for the support.

CONFLICTS OF INTEREST

Nil

REFERENCES


1. Ashok Kumar D, Mazumder UK, Gupta M, Senthilkumar GP, Selvan VT. Evaluation of Antioxidant and Free Radical Scavenging Activities of *Oxystelma esculentum* in various *in vitro* Models. *J Comp Integ Med* 2008;5(1):Article 9.
2. Veerapur VP, Prabhakar KR, Parihar VP, Kandadi MR, Ramakrishna S, Mishra B, Satish RBS, Srinivasan KK, Priyadarsini KI, Unnikrishnan MK. *Ficus racemosa* Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector. *Evid Based Complement Alternat Med* 2009;6(3):317-24.
3. Kumpulainen JT, Solonen JT. Natural Antioxidants and Anticarcinogenes in Nutrition. Health and Disease. UK: The Royal Society of Chemistry 1999; p.17,187.
4. Cook NC, Samman S. Flavonoids, Chemistry, metabolism, Cardio protective effects, and dietary sources. *Nutritional Biochemistry* 1996; p.7,66-76.
5. Schuler P. Natural Antioxidants exploited commercially, in food antioxidants Houdson BJF (ed). London: Elseveier; 1990. p.99-170.
6. Ayurvedic Formulary of India, Part-I, 1st edn. New Delhi: Government of India, Ministry of Health and Family Welfare, Department of Indian Systems of Medicine and Homoeopathy, 2003; p.119.
7. The Ayurvedic Pharmacopoeia of India. 1st ed., Part II (Formulations), Vol I. New Delhi: Govt. of India. Ministry of Health and Family Welfare, Dept. of AYUSH, 2007; p.79-89.
8. Lachman L, Lieberman HA. Theory and Practice of Industrial Pharmacy, Indian Ed. New Delhi: CBS Publication and Distributors, 2009; p.67-8.
9. Raghuramulu N, Madhava NK, Kalyanasundaram S. A manual of Laboratory techniques. Hyderabad: National Institute of Nutrition, 2003; p.57,63.
10. Krishnaveni S, Theymoli Balasubramanian and Sadasivam S. *Food Chem* 1984;15:229.
11. Harborne JB. *Phytochemical methods*. London: Chapman & Hall, 1998; p.60-6.
12. Gallagher AM, Flatt PR, Duffy G, and Abdel-Wahab YHA. The effects of traditional anti diabetic plants on *in vitro* glucose diffusion. *Nutr Res* 2003;23:413-24.
13. George B, Kaur C, Khurdiya DS, Kapoor HC. Antioxidants in tomato (*Lycopersicum esculentum*) as a function of genotype. *Food Chem* 2004:84.
14. Oyaizee M. Studies on product of browning reaction prepared from glucose amine. *Japanese J Nutr* 1986;44:307-15.
15. Nostro A, Germano MP, D'angelo V, Marini A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. *Let Appl Microbiol* 2000;30:379-84.
16. Anthea M, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Jill DW. *Human Biology and Health*. USA: Englewood Cliffs, New Jersey, Prentice Hall, 1993; p.52-9.
17. Casley-Smith JR, Morgan RG, Piller NB. Treatment of lymphedema of the arms and legs with 5,6-benzo-(alpha)-pyrone. *NEJM* 1993; 329:1158-63.
18. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. *Crit Rev Food Sci Nutr* 1998;38:421-64.
19. Pietta PG. Flavonoids as antioxidants. *J Nat Prod* 2000;63:1035-42.
20. Cook NC, Samman S. Flavonoids- chemistry, metabolism, cardioprotective effects and dietary sources. *Nutr Biochem* 1996;7:66-76.
21. Kahkonen MP, Hopia AI, Ucorela HJ, Rauha JP, Pihlaja K, Kujala TS. Antioxidant activity of plant extracts containing phenolic compound. *J Agric food Chem* 1999;47:3954-62.

ABOUT AUTHORS

Mrs. Priyadarshini MSc has worked as Junior Research Fellow in UGC Major Research Project on standardisation of Ayurveda formulations for a period of 3 years. She has authored 5 research papers. Along with drug standardisation she has expertise in evaluation of *in vitro* antioxidant, assay for thyroid hormones by ELISA, biochemical analysis and microbial load analysis.

Dr. KN Sunil Kumar MSc PhD is working as Senior Research Officer in Pharmacognosy and Phytochemistry at SDM Ayurveda and Allied Sciences, Udupi, India 574118. He obtained Senior Research Fellowship from ICMR, Young Scientist Award, VGST, Govt. Of Karnataka and Dr. PD Sethi award for 5 best HPTLC papers. He is investigating projects on standardization of Ayurvedic formulation from agencie like UGC, VGST, RGUHS and PCIM (AYUSH). He is Author of 69 research papers and 55 monographs on pharmacognosy, phytochemistry and standardization of medical plants/products. He is also serving as Chief editor Journal of Ayurvedic and Herbal medicine and subject editor Pharmacognosy Ayu-An international Quarterly Journal of Research in Ayurveda.

GRAPHICAL ABSTRACT

Cite this article as: Priyadarshini, Koppala Narayana Sunil Kumar, Pushpendra, Bantwal Shivarama Holla, Basaviah Ravishankar. Chemical analysis and anti-oxidant properties of *Hutabhusadi Curna* - A polyherbal Ayurveda formulation. *J Ayu Med Sci* 2016;1(1):41-45. DOI: 10.5530/jams.2016.1.6

©Journal of Ayurveda Medical Sciences
– Herbal Research Guidance and Solutions' (HRGS) Ayurveda Journal